DOI QR코드

DOI QR Code

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan (School of Electronic & Mechanical Engineering, Xidian University) ;
  • Li, Zhousu (School of Electronic & Mechanical Engineering, Xidian University) ;
  • Guo, Kongming (School of Electronic & Mechanical Engineering, Xidian University)
  • Received : 2017.09.29
  • Accepted : 2018.04.18
  • Published : 2018.07.10

Abstract

The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Keywords

Acknowledgement

Supported by : Science Foundation of Shaanxi Province, National Science Foundation of China

References

  1. Berardengo, M., Manzoni, S. and Conti, A.M. (2017), "Multimode passive piezoelectric shunt damping by means of matrix inequalities", J. Sound Vibr., 405, 287-305. https://doi.org/10.1016/j.jsv.2017.06.002
  2. Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M. (2014), "Geometrically non-linear transient thermo-elastic response of FG beams integrated with a pair of FG piezoelectric sensors", Comput. Struct., 107, 48-59. https://doi.org/10.1016/j.compstruct.2013.07.045
  3. Bruant, I. and Proslier, L. (2013), "Improved active control of a functionally graded material beam with piezoelectric patches", J. Vibr. Contr., 1, 1-22.
  4. Bruant, I. and Proslier, L. (2016), "Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams", Int. J. Mech. Mater. Des., 12(2), 173-192. https://doi.org/10.1007/s10999-015-9297-y
  5. Chang, X.H., Xiong, J. and Park, H. (2016), "Fuzzy robust dynamic output feedback control of nonlinear systems with linear fractional parametric uncertainties", Appl. Math. Comput., 291, 213-225.
  6. Dogan, V. (2014), "Active vibration control of functionally graded plates under random excitation", J. Intell. Mater. Syst. Struct., 1, 1-15.
  7. Duc, N.G., Quan, T.Q. and Luat, V.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electro-mechanical loads", Comput. Struct., 125, 29-40. https://doi.org/10.1016/j.compstruct.2015.01.041
  8. Farnam, A. and Esfanjani, R.M. (2016), "Improved linear matrix inequality approach to stability analysis of linear systems with interval time-varying delays", J. Comput. Appl. Math., 294, 49-56. https://doi.org/10.1016/j.cam.2015.07.031
  9. Hemmatnezhad, M., Ansari, R. and Rahimii, G.H. (2013), "Largeamplitude free vibrations of functionally graded beams by means of a finite element formulation", Appl. Math. Model., 37(18-19), 8495-8504. https://doi.org/10.1016/j.apm.2013.03.055
  10. Huang, X.L. and Shen, H.S. (2006), "Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments", J. Sound Vibr., 289(1-2), 25-53. https://doi.org/10.1016/j.jsv.2005.01.033
  11. Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vibr., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
  12. Jadhav, P.A. and Bajoria, K.M. (2013), "Free and forced vibration control of piezoelectric FGM plate subjected to electromechanical loading", Smart Mater. Struct., 22(6), 065021-065035. https://doi.org/10.1088/0964-1726/22/6/065021
  13. Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011
  14. Li, Z.J. and Adeli, H. (2016), "New discrete-time robust $H_2/H_{\infty}$ algorithm for vibration control of smart structures using linear matrix inequalities", Eng. Appl. Artif. Intel., 55, 47-57. https://doi.org/10.1016/j.engappai.2016.05.008
  15. Kiani, Y., Sadighi, M. and Eslami, M.R. (2013), "Dynamic analysis and active control of smart doubly curved FGM panels", Comput. Struct., 102, 205-216. https://doi.org/10.1016/j.compstruct.2013.02.031
  16. Klug, M., Leite, J.S.V. and Silva, F.P.L. (2015), "Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models", Fuzz. Set. Syst., 263, 92-111. https://doi.org/10.1016/j.fss.2014.05.019
  17. Koizumi, M. (1993), "Concept of FGM", Ceram. Trans., 34, 3-10.
  18. Mohammad, T. and Singh, B.N. (2015), "Stochastic vibration characteristics of finite element modelled functionally gradient plates", Comput. Struct., 130, 95-106. https://doi.org/10.1016/j.compstruct.2015.04.030
  19. Nguyen-Quang, K., Dang-Trung, H., Ho-Huu, V., Luong-Van, H. and Nguyen-Thoi, T. (2017), "Analysis and control of FGM plates integrated with piezoelectric sensors and actuators using cell-based smoothed discrete shear gap method(CS-DSG3)", Comput. Struct., 165, 115-129. https://doi.org/10.1016/j.compstruct.2017.01.006
  20. Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comput. Meth. Appl. M., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016
  21. Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., 27(2), 199-222. https://doi.org/10.12989/sem.2007.27.2.199
  22. Nie, G.J., Zhong, Z. and Chen, S.P. (2013), "Analytical solution for a functionally graded beam with arbitrary graded material properties", Compos. Part B-Eng., 44(1), 274-282. https://doi.org/10.1016/j.compositesb.2012.05.029
  23. Pota, H.R. and Alberts, T.E. (1995), "Mulitivariable transfer functions for a slewing piezoelectric laminate beam", ASME J. Dyn. Syst., 117(3), 353-359.
  24. Ray, M.C. and Sachade, H.M. (2006), "Finite element analysis of smart functionally graded plates", Int. J. Sol. Struct., 43(18-19), 5468-5484. https://doi.org/10.1016/j.ijsolstr.2005.06.096
  25. Reddy, J.N., Romanoff, J. and Loya, J.A. (2016), "Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory", Eur. J. Mech. A-Sol., 56, 92-104. https://doi.org/10.1016/j.euromechsol.2015.11.001
  26. Rittenschober, T. and Schlacher, K. (2012), "Observer-based self sensing actuation of piezoelastic structures for robust vibration control", Automat., 48(6), 1123-1131. https://doi.org/10.1016/j.automatica.2012.02.038
  27. Sana, S. and Rao, V.S. (2000), "Application of linear matrix inequalities in the control of smart structural systems", J. Intel. Mater. Syst. Str., 11(4), 321-323.
  28. Schulz, S.L., Gomes, H.M. and Awruch, A.M. (2013), "Optimal discrete piezoelectric patch allocation on composite structures for vibration control based on GA and modal LQR", Comput. Struct., 128, 101-115. https://doi.org/10.1016/j.compstruc.2013.07.003
  29. Selim, B.A., Zhang, L.W. and Liew, K.M. (2016), "Active vibration control of FGM plates with piezoelectric layers based on Reddy's higher-order shear deformation theory", Comput. Struct., 155, 118-134. https://doi.org/10.1016/j.compstruct.2016.07.059
  30. Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy's higher-order shear deformation theory", Comput. Struct., 163, 350-364. https://doi.org/10.1016/j.compstruct.2016.11.011
  31. Shaker, A., Abdelrahman, W., Tawfik, M. and Sadek, E. (2008), "Stochastic finite element analysis of the free vibration of functionally graded material plates", Comput. Mech., 41(5), 707-714. https://doi.org/10.1007/s00466-007-0226-2
  32. Shegokar, N.L. and Lal, A. (2014), "Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties", Meccan., 49(5), 1039-1068. https://doi.org/10.1007/s11012-013-9852-2
  33. Shen, H.S. and Wang, H. (2016), "Postbuckling of pressure-loaded FGM doubly curved panels resting on elastic foundations in thermal environments", Thin Wall. Struct., 100, 124-133. https://doi.org/10.1016/j.tws.2015.11.015
  34. Shirazi, A.H.N., Owji, H.R. and Rafeeyan, M. (2011), "Active vibration control of an FGM rectangular plate using fuzzy Logic controllers", Proc. Eng., 14, 3019-3026. https://doi.org/10.1016/j.proeng.2011.07.380
  35. Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates-a critical review of various modeling techniques and solution methods", Comput. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047
  36. Wang, Q.S., Shi, D.Y., Liang, Q. and Shi, X.J. (2016), "A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions", Compos. Part B-Eng., 88, 264-294. https://doi.org/10.1016/j.compositesb.2015.10.043
  37. Wei, C.Z., Park, S.Y. (2017), "Dynamic optimal output feedback control of satellite formation reconfiguration based on an LMI approach", Aerosp. Sci. Technol., 63, 214-231. https://doi.org/10.1016/j.ast.2016.12.031
  38. Wu, C.P. and Liu, Y.C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Comput. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031
  39. Xu, Y.L., Qian, Y., Chen, J.J. and Song, G. (2015), "Stochastic dynamic characteristics of FGM beams with random material properties", Comput. Struct., 133, 585-594. https://doi.org/10.1016/j.compstruct.2015.07.057
  40. Xu, Y.L., Qian, Y. and Song, G. (2016), "Stochastic finite element method for free vibration characteristics of random FGM beams", Appl. Math. Model., 40(23-24), 10238-10253. https://doi.org/10.1016/j.apm.2016.07.025
  41. Xu, Y.L, Qian, Y., Chen, J.J. and Song, G. (2015), "Modal-based mixed vibration control for uncertain piezoelectric flexible structures", Struct. Eng. Mech., 55(1), 229-244. https://doi.org/10.12989/sem.2015.55.1.229

Cited by

  1. Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077