DOI QR코드

DOI QR Code

도열병균의 Transposable elements

Transposable Elements in Magnaporthe Species

  • Chi, Myoung-Hwan (Noble Research Institute) ;
  • Park, Sook-Young (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University)
  • 투고 : 2018.02.12
  • 심사 : 2018.03.06
  • 발행 : 2018.06.30

초록

곰팡이 종들은 유전체내에 대략 10% 정도의 다양한 전이인자와 함께 반복적인 염기서열을 갖는다. 이러한 전이인자들의 대부분은 유전체내에서 활발히 전이되며 곰팡이 병원균의 기주 범위와도 연관성을 갖으며 분포하는 것으로 알려져있다. 화본과 작물에 병을 일으키는 도열병에 분포하는 전이인자들은 활발히 전이하는 것으로 보이며, 특정 기주에 감염하는 개체군에 특이적으로 분포하는 경우가 많았다. 다수의 연구 보고에서도열병균의 전이인자가 비병원성 유전자의 기능을 상실하는데 작용하여, 이로인해 저항성 품종에 병을 일으켰다. 따라서, 도열병균의 전이인자들은 식물-곰팡이 사이의 상호 진화를 유도하는 원동력 중 하나일 수 있다. 본 총설에서는 도열병균에 존재하는 전이인자들의 종류와 생물학적인 기능에 관해 정리하였다.

The fungal species contain diverse transposable elements and repetitive sequences up to ~10% of their genome. It has been reported that distribution of transposable elements tends to correlate with the host range of the pathogen. Moreover, transposable elements cause the loss of an avirulence gene in the pathogen, which resulted in disease on a resistance cultivar. Thus, the transposable elements in the fungal pathogens may be one of the key factors driving the plant-fungus interactive evolution. In this article, we reviewed classification and biological functions of transposable elements in Magnaporthe species.

키워드

참고문헌

  1. Anaya, N. and Roncero, M. I. 1995. Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Mol. Gen. Genet. 249: 637-647. https://doi.org/10.1007/BF00418033
  2. Bennetzen, J. 2005. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 15: 621-627. https://doi.org/10.1016/j.gde.2005.09.010
  3. Boeke, J. D. 1989. Transposable Elements in Saccharomyces cerevisiae. American Society for Microbiology, Washington, DC, USA.
  4. Bonman, J. M., Khush, G. S. and Nelson, R. J. 1992. Breeding rice for resistance to pests. Annu. Rev. Phytopathol. 30: 507-528. https://doi.org/10.1146/annurev.py.30.090192.002451
  5. Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., Mcadams, S. A. et al. 2000. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12: 2033-2046. https://doi.org/10.1105/tpc.12.11.2033
  6. Bushman, F. 2002. Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harber Laboratory Press, Cold Spring Harbor, NY, USA.
  7. Cogoni, C. 2001. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55: 381-406. https://doi.org/10.1146/annurev.micro.55.1.381
  8. Colot, V., Goyon, C., Faugeron, G. and Rossignol, J. L. 1995. Methylation of repeated DNA sequences and genome stability in Ascobolus immersus. Can. J. Bot. 73: S221-S225. https://doi.org/10.1139/b95-250
  9. Correa-Victoria, F. J. and Zeigler, R. S. 1991. Stable Resistance and Pathogenic Variability in the Rice-Pyricularia oryzae Complex. Cntro Internacional de Agricultura Tropical, CA, USA.
  10. Daboussi, M. J. 1997. Fungal transposable elements and genome evolution. Genetica 100: 253-260. https://doi.org/10.1023/A:1018354200997
  11. Daboussi, M. J. and Capy, P. 2003. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 57: 275-299. https://doi.org/10.1146/annurev.micro.57.030502.091029
  12. Dash, S. and Peterson, P. A. 1994. Frequent loss of the En transposable element efter excision and its relation to chromosome replication in maize (Zea mays L.). Genetics 136: 653-671.
  13. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J. et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980-986. https://doi.org/10.1038/nature03449
  14. Decaris, B., Francou, F., Lefort, C. and Rizet, G. 1978. Unstable ascospore color mutants of Ascobolus immersus. Mol. Gen. Genet. 162: 69-81. https://doi.org/10.1007/BF00333852
  15. Devos, K. M., Brown, J. K. and Bennetzen, J. L. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075-1079. https://doi.org/10.1101/gr.132102
  16. Dobinson, K. F., Harris, R. E. and Hamer, J. E. 1993. Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 6: 114-126. https://doi.org/10.1094/MPMI-6-114
  17. Farman, M. L., Eto, Y., Nakao, T., Tosa, Y., Nakayashiki, H., Mayama, S. et al. 2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol. Plant-Microbe Interact. 15: 6-16. https://doi.org/10.1094/MPMI.2002.15.1.6
  18. Farman, M. L., Jackson, V., Iqbal, M. P. and Leong, S. A. 1996a. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251: 665-674.
  19. Farman, M. L., Taura, S. and Leong, S. A. 1996b. The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3' end of an inverted repeat transposon. Mol. Plant Pathol. 251: 675-681.
  20. Faugeron, G. 2000. Diversity of homology-dependent gene silencing strategies in fungi. Curr. Opin. Microbiol. 3: 144-148. https://doi.org/10.1016/S1369-5274(00)00066-7
  21. Favaro, L. C. L., Araujo, W. L., Azevedo, J. L. and Paccola-Meirelles, L. D. 2005. The biology and potential for genetic research of transposable elements in filamentous fungi. Genet. Mol. Biol. 28: 804-813. https://doi.org/10.1590/S1415-47572005000500024
  22. Fedoroff, N. V. 1989. Maize Transposable Elements. American Society for Microbiology, Washington, DC, USA.
  23. Feschotte, C., Jiang, N. and Wessler, S. R. 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329-341.
  24. Finnegan, D. J. 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103-107. https://doi.org/10.1016/0168-9525(89)90039-5
  25. Fudal, I., Bohnert, H. U., Tharreau, D. and Lebrun, M. H. 2005. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet. Biol. 42: 761-772. https://doi.org/10.1016/j.fgb.2005.05.001
  26. George, M. L., Nelson, R. J., Zeigler, R. S. and Leung, H. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88: 223-229. https://doi.org/10.1094/PHYTO.1998.88.3.223
  27. Gilson, E., Clement, J. M., Brutlag, D. and Hofnung, M. 1984. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J. 3: 1417-1421.
  28. Hamer, J. E., Farrall, L., Orbach, M. J., Valent, B. and Chumley, F. G. 1989. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc. Natl. Acad. Sci. U.S.A. 86: 9981-9985. https://doi.org/10.1073/pnas.86.24.9981
  29. Havecker, E. R., Gao, X. and Voytas, D. F. 2004. The diversity of LTR retrotransposons. Genome Biol. 5: 225. https://doi.org/10.1186/gb-2004-5-6-225
  30. Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y. and Mayama, S. 2001. Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol. Gen. Genet. 266: 318-325. https://doi.org/10.1007/s004380100560
  31. Javan-Nikkhah, M., Mcdonald, B., Banke, S. and Hedjaroude, G. 2004. Genetic structure of Iranian Pyricularia grisea populations based on rep-PCR fingerprinting. Eur. J. Plant Pathol. 110: 909-919. https://doi.org/10.1007/s10658-004-5570-x
  32. Jia, Y., Mcadams, S. A., Bryan, G. T., Hershey, H. P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19: 4004-4014. https://doi.org/10.1093/emboj/19.15.4004
  33. Jordan, I. K. and Mcdonald, J. F. 1999. Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151: 1341-1351.
  34. Kachroo, P., Ahuja, M., Leong, S. A. and Chattoo, B. B. 1997. Organisation and molecular analysis of repeated DNA sequences in the rice blast fungus Magnaporthe grisea. Curr. Genet. 31: 361-369. https://doi.org/10.1007/s002940050217
  35. Kachroo, P., Leong, S. A. and Chattoo, B. B. 1994. Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 245: 339-348. https://doi.org/10.1007/BF00290114
  36. Kachroo, P., Leong, S. A. and Chattoo, B. B. 1995. Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc. Natl. Acad. Sci. U.S.A. 92: 11125-11129. https://doi.org/10.1073/pnas.92.24.11125
  37. Kang, S. 2001. Organization and distribution pattern of MGLR-3, a novel retrotransposon in the rice blast fungus Magnaporthe grisea. Fungal Genet. Biol. 32: 11-19. https://doi.org/10.1006/fgbi.2000.1246
  38. Kang, S., Lebrun, M. H., Farrall, L. and Valent, B. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea virulence gene. Mol. Plant-Microbe Interact. 14: 671-674. https://doi.org/10.1094/MPMI.2001.14.5.671
  39. Kang, S., Sweigard, J. A. and Valent, B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 8: 939-948. https://doi.org/10.1094/MPMI-8-0939
  40. Kempken, F. and Kuck, U. 1998. Transposons in filamentous fungifacts and perspectives. Bioessays 20: 652-659. https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K
  41. Kinsey, J. A. 1993. Transnuclear retrotransposition of the Tad element of Neurospora. Proc. Natl. Acad. Sci. U.S.A. 90: 9384-9387. https://doi.org/10.1073/pnas.90.20.9384
  42. Kito, H., Takahashi, Y., Sato, J., Fukiya, S., Sone, T. and Tomita, F. 2003. Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr. Genet. 42: 322-331. https://doi.org/10.1007/s00294-002-0365-0
  43. Kiyosawa, S. 1982. Genetic and epidemiological modeling of breakdown of plant disease resistance. Annu. Rev. Phytopathol. 20: 93-117. https://doi.org/10.1146/annurev.py.20.090182.000521
  44. Kumar, A. and Bennetzen, J. L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479-532. https://doi.org/10.1146/annurev.genet.33.1.479
  45. Langin, T., Capy, P. and Daboussi, M. J. 1995. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol. Gen. Genet. 246: 19-28. https://doi.org/10.1007/BF00290129
  46. Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X. et al. 2009. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant-Microbe Interact. 22: 411-420. https://doi.org/10.1094/MPMI-22-4-0411
  47. Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T. et al. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20: 3479-3483. https://doi.org/10.1093/nar/20.13.3479
  48. Mcclintock, B. 1984. The significance of responses of the genome to challenge. Science 226: 792-801. https://doi.org/10.1126/science.15739260
  49. Mchale, M. T., Roberts, I. N., Noble, S. M., Beaumont, C., Whitehead, M. P., Seth, D. et al. 1992. CfT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol. Gen. Genet. 233: 337-347.
  50. Meyn, M. A., Farrall, L., Chumley, F. G., Valent, B. and Orbach, M. J. 1998. LINEs and SINEs in Magnaporthe grisea. In: Proceedings of the Int. Rice Blast Disease Conference 2nd. Abstract S4, O-22.
  51. Moerman, D. G. and Waterston, R. H. 1989. Mobile Elements in Caenorhabditis Elegans and Other Nematodes. American Society for Microbiology, Washington, DC, USA.
  52. Morgante, M. 2005. Plant genome organisation and diversity: the year of the junk! Curr. Opin. Bitechnol. 17: 168-173.
  53. Motallebi, P., Javan-Nikkhah, M., Okhovvat, M., Berdi Fotouhifar, K. and Hossien Mosahebi, G. 2009. Differentiation of Magnaporthe species complex by rep-PCR genomic fingerprinting. Commun. Agric. Appl. Biol. Sci. 74: 821-829.
  54. Munoz-Lopez, M. and Garcia-Perez, J. L. 2010. DNA transposons: nature and applications in genomics. Curr. Genomics 11: 115-128. https://doi.org/10.2174/138920210790886871
  55. Murata, T., Kadotani, N., Yamaguchi, M., Tosa, Y., Mayama, S. and Nakayashiki, H. 2007. siRNA-dependent and -independent post-transcriptional cosuppression of the LTR-retrotransposon MAGGY in the phytopathogenic fungus Magnaporthe oryzae. Nucleic Acids Res. 35: 5987-5994. https://doi.org/10.1093/nar/gkm646
  56. Nakayashiki, H., Kiyotomi, K., Tosa, Y. and Mayama, S. 1999. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153: 693-703.
  57. Nakayashiki, H., Matsuo, H., Chuma, I., Ikeda, K., Betsuyaku, S., Kusaba, M. et al. 2001. Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res. 29: 4106-4113. https://doi.org/10.1093/nar/29.20.4106
  58. Nishimura, M., Hayashi, N., Jwa, N. S., Lau, G. W., Hamer, J. E. and Hasebe, A. 2000. Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol. Plant-Microbe Interact. 13: 892-894. https://doi.org/10.1094/MPMI.2000.13.8.892
  59. Nitta, N., Farman, M. L. and Leong, S. A. 1997. Genome organization of Magnaporthe grisea: Integration of genetic maps, clustering of transposable elements and identification of genome duplication and rearrangements. Theor. Appl. Genet. 95: 20-32. https://doi.org/10.1007/s001220050528
  60. Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G. and Valent, B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12: 2019-2032. https://doi.org/10.1105/tpc.12.11.2019
  61. Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y. H. 2008. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 98: 436-442. https://doi.org/10.1094/PHYTO-98-4-0436
  62. Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y. H. 2003. Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology 93: 1378-1385. https://doi.org/10.1094/PHYTO.2003.93.11.1378
  63. Sanchez, E., Jr., Asano, K. and Sone, T. 2011. Characterization of Inago1 and Inago2 retrotransposons in Magnaporthe oryzae. J. Gen. Plant Pathol. 77: 239-242. https://doi.org/10.1007/s10327-011-0314-1
  64. Sanmiguel, P. and Eveentzen, J. L. 2002. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposon. Ann. Bot. 82: 37-44.
  65. Selker, E. U. 1999. Epigenetic phenomena in filamentous fungi: Useful paradigms or repeated-induced confusion? Trends Genet. 13: 296-301.
  66. Shull, V. and Hamer, J. E. 1996. Rearrangements at a DNA-fingerprint locus in the rice blast fungus. Curr. Genet. 30: 263-271. https://doi.org/10.1007/s002940050131
  67. Sone, T., Suto, M. and Tomita, F. 1993. Host species specific repetitive DNA sequence in the genome of Magnaporthe grisea, the rice blast fungus. Biosci. Biotechnol. Biochem. 57: 1228-1230. https://doi.org/10.1271/bbb.57.1228
  68. Suzuki, F., Arai, M. and Yamaguchi, J. 2006. DNA fingerprinting of Pyricularia grisea by rep-PCR using a single primer based on the terminal inverted repeat from either of the transposable elements Pot2 and MGR586. J. Gen. Plant. Pathol. 72: 314-317. https://doi.org/10.1007/s10327-006-0290-z
  69. Valent, B. and Chumley, F. G. 1994. Rice Blast Disease. CAB International, Wallingford, UK.
  70. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B. et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973-982. https://doi.org/10.1038/nrg2165
  71. Winston, F., Chaleff, D. T., Valent, B. and Fink, G. R. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179-197.
  72. Zeigler, R. S., Leong, S. A. and Teng, P. S. 1994. Rice Blast Disease. CAB International, Wallingford, UK.
  73. Zhou, E., Jia, Y., Singh, P., Correll, J. C. and Lee, F. N. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol 44: 1024-1034. https://doi.org/10.1016/j.fgb.2007.02.003
  74. Zhu, P. and Oudemans, P. V. 2000. A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry. Curr. Genet. 38: 241-247. https://doi.org/10.1007/s002940000162