DOI QR코드

DOI QR Code

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light

  • Oh, Han Sang (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University) ;
  • Lee, Sung-eun (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University) ;
  • Han, Chae-seong (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University) ;
  • Kim, Joon (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Nam, Onyou (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Seo, Seungbeom (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Chang, Kwang Suk (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Jin, EonSeon (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Hwang, Yong-sic (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University)
  • Received : 2018.01.21
  • Accepted : 2018.05.08
  • Published : 2018.06.15

Abstract

Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.

Keywords

References

  1. Bender, S. J., Durkin, C. A., Berthiaume, C. T., Morales, R. L. & Armbrust, E. V. 2014. Transcriptional responses of three model diatoms to nitrate limitation of growth. Front Mar. Sci. 1:1-15.
  2. Brembu, T., Chauton, M. S., Winge, P., Bones, A. M. & Vadstein, O. 2017. Dynamic responses to silicon in Thalasiossira pseudonana: identification, characterisation and classification of signature genes and their corresponding protein motifs. Sci. Rep. 7:4865. https://doi.org/10.1038/s41598-017-04921-0
  3. Brzezinski, M. A. & Conley, D. J. 1994. Silicon deposition during the cell cycle of Thalassiosira weissflogii (Bacillariophyceae) determined using dual rhodamine 123 and propidium iodide staining. J. Phycol. 30:45-55. https://doi.org/10.1111/j.0022-3646.1994.00045.x
  4. Brzezinski, M. A., Olson, R. J. & Chisholm, S. W. 1990. Silicon availability and cell-cycle progression in marine diatoms. Mar. Ecol. Prog. Ser. 67:83-96. https://doi.org/10.3354/meps067083
  5. Darley, W. M. & Volcani, B. E. 1969. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp. Cell Res. 58:334-342. https://doi.org/10.1016/0014-4827(69)90514-X
  6. Descles, J., Vartanian, M., El Harrak, A., Quinet, M., Bremond, N., Sapriel, G., Bibette, J. & Lopez, P. J. 2008. New tools for labeling silica in living diatoms. New Phytol. 177:822-829. https://doi.org/10.1111/j.1469-8137.2007.02303.x
  7. Durkin, C. A., Koester, J. A., Bender, S. J. & Armbrust, E. V. 2016. The evolution of silicon transporters in diatoms. J. Phycol. 52:716-731. https://doi.org/10.1111/jpy.12441
  8. Falkowski, P. G., Barber, R. T. & Smetacek, V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200-206. https://doi.org/10.1126/science.281.5374.200
  9. Frigeri, L. G., Radabaugh, T. R., Haynes, P. A. & Hildebrand, M. 2006. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation. Mol. Cell Proteomics 5:182-193. https://doi.org/10.1074/mcp.M500174-MCP200
  10. Gillard, J., Devos, V., Huysman, M. J. J., De Veylder, L., D'Hondt, S., Martens, C., Vanormelingen, P., Vannerum, K., Sabbe, K., Chepurnov, V. A., Inze, D., Vuylsteke, M. & Vyverman, W. 2008. Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiol. 148:1394-1411. https://doi.org/10.1104/pp.108.122176
  11. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  12. Hazelaar, S., Van Der Strate, H. J., Gieskes, W. W. C. & Vrieling, E. G. 2005. Monitoring rapid valve formation in the pennate diatom Navisula salinarum (Bacillariophyceae). J. Phycol. 41:354-358. https://doi.org/10.1111/j.1529-8817.2005.04131.x
  13. Hildebrand, M. 2000. Silicic acid transport and its control during cell wall silicification in diatoms. In Bauerlein, E. (Ed.) Biomineralization: From Biology to Biotechnology and Medical Application. Wiley-VCH, Weinheim, pp. 171-188.
  14. Hildebrand, M. 2008. Diatoms, biomineralization processes, and genomics. Chem. Rev. 108:4855-4874. https://doi.org/10.1021/cr078253z
  15. Hildebrand, M., Dahlin, K. & Volcani, B. E. 1998. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260:480-486. https://doi.org/10.1007/s004380050920
  16. Hildebrand, M., Frigeri, L. G. & Davis, A. K. 2007. Synchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycle. J. Phycol. 43:730-740. https://doi.org/10.1111/j.1529-8817.2007.00361.x
  17. Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M. H. & Sommeijer, B. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960-2970. https://doi.org/10.1890/03-0763
  18. Huysman, M. J. J., Martens, C., Vandepoele, K., Guillard, J., Rayko, E., Heijde, M., Bowler, C., Inze, D., Van de Peer, Y., De Veylder, L. & Vyverman, W. 2010. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 11:R17. https://doi.org/10.1186/gb-2010-11-2-r17
  19. Lavaud, J., Rousseau, B. & Etienne, A. -L. 2004. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J. Phycol. 40:130-137. https://doi.org/10.1046/j.1529-8817.2004.03026.x
  20. Lavaud, J., Strzepek, R. F. & Kroth, P. G. 2007. Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol. Oceanogr. 52:1188-1194. https://doi.org/10.4319/lo.2007.52.3.1188
  21. Li, C. ‐W., Chu, S. & Lee, M. 1989. Characterizing the silica deposition vesicle of diatoms. Protoplasma 151:158-163. https://doi.org/10.1007/BF01403453
  22. Martin-Jezequel, V., Hildebrand, M. & Brzezinski, M. A. 2000. Silicon metabolism in diatoms: implications for growth. J. Phycol. 36:821-840. https://doi.org/10.1046/j.1529-8817.2000.00019.x
  23. Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz, J., Salamov, A., Sanges, R., Toseland, A., Ward, B. J., Allen, A. E., Dupont, C. L., Frickenhaus, S., Maumus, F., Veluchamy, A., Wu, T., Barry, K. W., Falciatore, A., Ferrante, M. I., Fortunato, A. E., Glöckner, G., Gruber, A., Hipkin, R., Janech, M. G., Kroth, P. G., Leese, F., Lindquist, E. A., Lyon, B. R., Martin, J., Mayer, C., Parker, M., Quesneville, H., Raymond, J. A., Uhlig, C., Valas, R. E., Valentin, K. U., Worden, A. Z., Armbrust, E. V., Clark, M. D., Bowler, C., Green, B. R., Moulton, V., van Oosterhout, C. & Grigoriev, I. V. 2017. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536-540. https://doi.org/10.1038/nature20803
  24. Olson, R. J., Vaulot, D. & Chisholm, S. W. 1986. Effects of environmental stresses on the cell cycle of two marine phytoplankton species. Plant Physiol. 80:918-925. https://doi.org/10.1104/pp.80.4.918
  25. Park, M., Yim, H. K., Park, H. G., Lim, J., Kim, S. H. & Hwang, Y. S. 2010. Interference with oxidative phosphorylation enhances anoxic expression of rice alpha-amylase genes through abolishing sugar regulation. J. Exp. Bot. 61:3235-3244. https://doi.org/10.1093/jxb/erq145
  26. Sackett, O., Petrou, K., Reedy, B., De Grazia, A., Hill, R., Doblin, M., Beardall, J., Ralph, P. & Heraud, P. 2013. Phenotypic plasticity of southern ocean diatoms: key to success in the sea ice habitat? PLoS ONE 8:e81185. https://doi.org/10.1371/journal.pone.0081185
  27. Sapriel, G., Quinet, M., Heijde, M., Jourdren, L., Tanty, V., Luo, G., Le Crom, S. & Lopez, P. J. 2009. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS ONE 4:e7458. https://doi.org/10.1371/journal.pone.0007458
  28. Schellenberger, C. B., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M. & Wilhelm, C. 2013. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J. Exp. Bot. 64:483-493. https://doi.org/10.1093/jxb/ers340
  29. Shimizu, K., Del Amo, Y., Brzezinski, M. A., Stucky, G. D. & Morse, D. E. 2001. A novel fluorescent silica tracer for biological silicification studies. Chem. Biol. 8:1051-1060. https://doi.org/10.1016/S1074-5521(01)00072-2
  30. Shrestha, R. P. & Hildebrand, M. 2015. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryot. Cell 14:29-40. https://doi.org/10.1128/EC.00209-14
  31. Thamatrakoln, K. & Hildebrand, M. 2007. Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle. Eukaryot. Cell 6:271-279. https://doi.org/10.1128/EC.00235-06
  32. Thamatrakoln, K. & Hildebrand, M. 2008. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol. 146:1397-1407. https://doi.org/10.1104/pp.107.107094
  33. Treguer, P., Nelson, D. M., Van Bennekom, A. J., Demaster, D. J., Leynaert, A. & Queguiner, B. 1995. The silica balance in the world ocean: a reestimate. Science 268:375-379. https://doi.org/10.1126/science.268.5209.375
  34. Valenzuela, J., Mazurie, A., Carlson, R. P., Gerlach, R., Cooksey, K. E., Peyton, B. M. & Fields, M. W. 2012. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol. Biofuels 5:40. https://doi.org/10.1186/1754-6834-5-40
  35. Vaulot, D., Olson, R. J. & Chisholm, S. W. 1986. Light and dark control of the cell cycle in two marine phytoplankton species. Exp. Cell Res. 167:38-52. https://doi.org/10.1016/0014-4827(86)90202-8
  36. Vaulot, D., Olson, R. J., Merkel, S. & Chisholm, S. W. 1987. Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Mar. Biol. 95:625-630. https://doi.org/10.1007/BF00393106
  37. Vrieling, E. G., Sun, Q., Beelen, T. P., Hazelaar, S., Gieskes, W. W., Van Santen, R. A. & Sommerdijk, N. A. 2005. Controlled silica synthesis inspired by diatom silicon biomineralization. J. Nanosci. Nanotechnol. 5:68-78. https://doi.org/10.1166/jnn.2005.010
  38. Yang, Z. K., Niu, Y. F., Ma, Y. H., Xue, J., Zhang, M. H., Yang, W. D., Liu, J. S., Lu, S. H., Guan, Y. & Li, H. Y. 2013. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels 6:67. https://doi.org/10.1186/1754-6834-6-67

Cited by

  1. Metabolic stability of freshwater Nitzschia palea strains under silicon stress associated with triacylglycerol accumulation vol.60, pp.None, 2018, https://doi.org/10.1016/j.algal.2021.102554