DOI QR코드

DOI QR Code

Diagnostic X-ray Spectra Detection by Monte Carlo Simulation

진단용 X-선 스펙트럼의 몬테칼로 전산모사 측정

  • Baek, Cheol-Ha (Department of Radiological Science, Kangwon National University) ;
  • Lee, Seung-Jae (Department of Radiological Science, Dongseo University) ;
  • Kim, Daehong (Department of Radiological Science, Eulji University)
  • 백철하 (강원대학교 보건과학대학 방사선학과) ;
  • 이승재 (동서대학교 보건의료계열 방사선학과) ;
  • 김대홍 (을지대학교 보건과학대학 방사선학과)
  • Received : 2018.03.12
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

Most diagnostic devices in the medical field use X-ray sources, which emit energy spectra. In radiological diagnosis, the quantitative and qualitative analyses of X-rays are essential for maintaining the image quality and minimizing the radiation dose to patients. This work aims to obtain the X-ray energy spectra used in diagnostic imaging by Monte Carlo simulation. Various X-ray spectra are simulated using a Monte Carlo simulation tool. These spectra are then compared to the reference data obtained with a tungsten anode spectral model using the interpolating polynomial (TASMIP) code. The X-ray tube voltages used are 50, 60, 80, 100, and 110 kV, respectively. CdTe and a-Se detector are used as the detectors for obtaining the X-ray spectra. Simulation results demonstrate that the various X-ray spectra are well matched with the reference data. Based on the simulation results, an appropriate X-ray spectrum, in accordance with the tube voltage, can be selected when generating an image for diagnostic imaging. The dose to be delivered to the patient can be predicted prior to examination in the diagnostic field.

대부분의 진단용 방사선 장치는 엑스선을 사용하며, 엑스선은 다양한 에너지를 갖는 스펙트럼을 갖는다. 진단 영상에서 엑스선의 정량적 및 정성적 분석은 선량을 줄이면서 영상 화질을 유지하는데 필수적이다. 본 연구의 목적은 진단 영상에 사용되는 엑스선 스펙트럼을 몬테칼로 시뮬레이션으로 측정하는 것이다. 다양한 엑스선 에너지 스펙트럼이 몬테칼로 시뮬레이션으로 측정되었다. 이 스펙트럼들은 다항식을 보간 한 양극 텅스텐 모델에 의해 계산된 결과와 비교하였다. 엑스선 관전압은 50, 60, 80, 100, 110 kV 였다. 검출기로는 카드뮴 텔루라이드와 비정질 셀레늄 물질을 사용하였다. 엑스선 에너지 스펙트럼의 시뮬레이션 결과는 참조 결과와 일치하였고, NRMSD 값은 최소 1.1%에서 최대 5.7%를 보였다. 시뮬레이션 결과에 의하면 진단 영상을 획득할 때 적절한 관전압의 선택을 가능하게 할 것이다. 또한, 영상 획득 전 환자에 전달되는 선량을 예측하는데 기여할 것이다.

Keywords

References

  1. M. Endrizzi, P. Delogu, A. Stefanini, "X-ray spectra reconstruction from analysis of attenuation data: A ba ck scattering Thomson source application," Nuclear In struments & Methods in Physics Research Section AAccelerators Spectrometers Detectors and Associated Equipment, Vol. 608, No. 1, pp. S78-S82, 2009. https://doi.org/10.1016/j.nima.2009.05.039
  2. T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Bohnel, G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nuclear Instruments & Methods in Physics Research Section A - Accelerators Spectrometers Detectors and Associated Equipment, Vol. 598, No. 2, pp. 510-514, 2008.
  3. D. Roet, C. Ceballos, P. Van Espen, “Comparison be tween MCNP and PENELOPE for the simulation of X-ray spectra in electron microscopy in the keV range,” Nuclear Instruments & Methods in Physics Research Section B, Vol. 251, No. 2, pp. 317-325, 2006. https://doi.org/10.1016/j.nimb.2006.06.025
  4. A.A. Mowlavi, “X-ray spectra calculation for different target-filter of mammograms using MCNP code,” Inte rnational Journal of Radiation Research, Vol. 3, No. 3, pp. 129-133, 2005.
  5. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloo mfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J. M. Vieira, D. Visvikis, R. Van de Walle , E. Wieers, C. Morel, "GATE: a simulation toolkit for PET and SPECT, Physics in Medicine and Biology," Vol. 49, No. 19, pp. 4543-4561, 2004. https://doi.org/10.1088/0031-9155/49/19/007
  6. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guiques, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Physics in Medicine and Biology, Vol. 56, No. 4, pp. 881-901, 2011. https://doi.org/10.1088/0031-9155/56/4/001
  7. J. M. Boone, J. A. Seibert, “An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV,” Medical Physics, Vol. 24, No. 11, pp. 1661-1670, 1997. https://doi.org/10.1118/1.597953
  8. X. Duan, J. Wang, L. Yu, S. Leng, C. H. McCollough, “CT scanner x-ray spectrum estimation from trans mission measurements,” Medical Physics, Vol. 38, No. 2, pp. 993-997, 2011. https://doi.org/10.1118/1.3547718