DOI QR코드

DOI QR Code

Investigating Biochemical Properties of Bacillus aryabhattai DA2 from Diesel-Contaminated Soil

  • Kim, Sang-Jun (Department of Natural Sciences, Naval Academy) ;
  • Adhikari, Arjun (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Ko-Eun (School of Applied Biosciences, Kyungpook National University) ;
  • Joo, Gil-Jae (Institute of Agricultural Science and Technology, Kyungpook National University)
  • Received : 2017.12.08
  • Accepted : 2018.06.11
  • Published : 2018.06.30

Abstract

Petroleum energy is the major source of the world energy market, and its massive usage, and the corresponding extreme environmental pollution, imposes a serious threat on the ecological cycles. By screening oil-contaminated soil, we isolated, identified, and characterized a novel strain that represents a considerable diesel-degrading potentiality; the Bacillus aryabhattai DA2 strain is registered in the NCBI with the accession number MG571630, and it possesses an efficient tributyrin-degrading capacity. The optimal condition for diesel degradation by DA2 strain was observed at pH between 7-8 and at the temperature of $30^{\circ}C$. The strain is resistant to salt as well as the antibiotics like ampicillin and streptomycin. These results indicate B. aryabhattai is one of the potential candidates for the remediation of the diesel-contaminated sites.

Keywords

References

  1. Aitken MD, WT Stringfellow, RD Nagel, C Kazunga and SH Chen. 1998. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can. J. Microbiol. 44:743-752. https://doi.org/10.1139/w98-065
  2. Alvarez PJ and TM Vogel. 1991. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 57:2981-2985.
  3. Bartha R and I Bossert. 1984. The treatment and disposal of petroleum wastes.
  4. Boldrin B, A Tiehm and C Fritzsche. 1993. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 59:1927-1930.
  5. Cappello S, G Caruso, D Zampino, LS Monticelli, G Maimone, R Denaro and L Giuliano. 2007. Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J. Appl. Microbiol. 102:184-194. https://doi.org/10.1111/j.1365-2672.2006.03071.x
  6. Cerqueira VS, EB Hollenbach, F Maboni, MH Vainstein, FA Camargo, RP Maria do Carmo and FM Bento. 2011. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour. Technol. 102:11003-11010. https://doi.org/10.1016/j.biortech.2011.09.074
  7. Cheung PY and BK Kinkle. 2001. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67:2222-2229. https://doi.org/10.1128/AEM.67.5.2222-2229.2001
  8. Choi HC, YA Cho, SI Choi and TJ Lee. 2010. A study on microbial community and microbial degradation of diesel. J. Korean Soc. Environ. Eng. 32:509-516.
  9. Collins CH and PM Lyne. 1970. Microbiological methods (3rd ed.). University Park press, Butterworths Baltimore, London.
  10. Das N and P Chandran. 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011:ID941810.
  11. Deng MC, J Li, FR Liang, M Yi, XM Xu, JP Yuan, J Peng, CF Wu and JH Wang. 2014. Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. Mar. Pollut. Bull. 83:79-86. https://doi.org/10.1016/j.marpolbul.2014.04.018
  12. Dibble JT and R Bartha. 1976. Effect of iron on the biodegradation of petroleum in seawater. Appl. Environ. Microbiol. 31:544-550.
  13. Dua M, A Singh, N Sethunathan and A Johri. 2002. Biotechnology and bioremediation: successes and limitations. Appl. Microbiol. Biotechnol. 59:143-152. https://doi.org/10.1007/s00253-002-1024-6
  14. Foght JM, DW Westlake, WM Johnson and HF Ridgway. 1996. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142:2333-2340. https://doi.org/10.1099/00221287-142-9-2333
  15. Geetha SJ, IM Banat and SJ Joshi. 2018. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol. 14:23-32.
  16. Gran-Scheuch A, E Fuentes, DM Bravo, JC Jimenez and JM Perez-Donoso. 2017. Isolation and characterization of phenanthrene degrading bacteria from diesel fuel-contaminated Antarctic soils. Front. Microbiol. 8:1634. https://doi.org/10.3389/fmicb.2017.01634
  17. Guzik U, K Hupert-Kocurek, M Sitnik and D Wojcieszynska. 2013. High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis, cis-muconic acid production. Antonie Leeuwenhoek 103:1297-1307. https://doi.org/10.1007/s10482-013-9910-8
  18. Kiyohara H, K Nagao and K Yana. 1982. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl. Environ. Microbiol. 43:454-457. https://doi.org/10.1128/AEM.43.2.454-457.1982
  19. Kubota K, D Koma, Y Matsumiya, SY Chung and M Kubo. 2008. Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2, 6-DCPIP assay. Biodegradation 19:749-757. https://doi.org/10.1007/s10532-008-9179-1
  20. Kvenvolden K and C Cooper. 2003. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett. 23:140-146. https://doi.org/10.1007/s00367-003-0135-0
  21. Kwon TH, JH Woo, NH Park and JS Kim. 2015. Characterization of PAH (Polycyclic Aromatic Hydrocarbon)-degrading bacteria isolated from commercial gasoline. Korean J. Environ. Agric. 34:244-251. https://doi.org/10.5338/KJEA.2015.34.3.34
  22. Leahy JG and RR Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54:305-315.
  23. Li F and L Zhu. 2012. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01. Bioresour. Technol. 123:42-48. https://doi.org/10.1016/j.biortech.2012.07.059
  24. Liu Z, H Yang, Z Huang, P Zhou and SJ Liu. 2002. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol. 58:679-682. https://doi.org/10.1007/s00253-002-0933-8
  25. Mahima G, H Krishnan and GP Pandey. 2016. Screening, identification, characterization and production of bacterial lipase from oil spilled soil. Int. J. Curr. Microbiol. App. Sci. 5:745-763.
  26. Margesin R, G Feller, M Hammerle, U Stegner and F Schinner. 2002. A colorimetric method for the determination of lipase activity in soil. Biotechnol. Lett. 24:27-33. https://doi.org/10.1023/A:1013801131553
  27. Meyer DD, NA Santestevan, F Bucker, SP Salamoni, R Andreazza, FA De Oliveira Camargo and FM Bento. 2012. Capability of a selected bacterial consortium for degrading diesel/biodiesel blends (B20): enzyme and biosurfactant production. J. Environ. Sci. Health Part A 47:1776-1784. https://doi.org/10.1080/10934529.2012.689227
  28. Mukherjee S, P Das and R Sen. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24:509-515. https://doi.org/10.1016/j.tibtech.2006.09.005
  29. Nadaf NH and JS Ghosh. 2011. Purification and characterization of catechol 1, 2-dioxygenase from Rhodococcus sp. NCIM 2891. Res. J. Environ. Earth Sci. 3:608-613.
  30. Samanta SK, AK Chakraborti and RK Jain. 1999. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl. Microbiol. Biotechnol. 53:98-107. https://doi.org/10.1007/s002530051621
  31. Sharma R, Y Chisti and UC Banerjee. 2001. Production, purification, characterization and application of lipases. Biotechnol. Adv. 19:627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  32. Sirisha E, N Rajasekar and LM Narasu. 2010. Isolation and optimization of lipase producing bacteria from oil contaminated soils. Adv. Biol. Res. 45:249-252.
  33. Seo JS, YS Keum, Y Hu, SE Lee and QX Li. 2006. Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1, 2-, 3, 4- and 9, 10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1, 2-diol after its formation from naphthalene-1, 2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65:2388-2394. https://doi.org/10.1016/j.chemosphere.2006.04.067
  34. Wei Q, R Mather and A Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96:331-334. https://doi.org/10.1016/j.biortech.2004.04.005
  35. Wentzel A, TE Ellingsen, HK Kotlar, SB Zotchev and M Throne-Holst. 2007. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 76:1209-1221. https://doi.org/10.1007/s00253-007-1119-1
  36. Wongsa P, M Tanaka, A Ueno, M Hasanuzzaman, I Yumoto and H Okuyama. 2004. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr. Microbiol. 49:415-422. https://doi.org/10.1007/s00284-004-4347-y