DOI QR코드

DOI QR Code

6가크롬 노출에 따른 넙치, Paralichthys olivaceus의 혈액학적 성상 및 혈장성분의 변화

Effects of Exposure to Hexavalent Chromium on Hematological Parameters and Plasma Components in Flatfish, Paralichthys olivaceus

  • 김진영 (선문대학교 수산생명의학과) ;
  • 성기현 (선문대학교 수산생명의학과) ;
  • 임록지 (선문대학교 수산생명의학과) ;
  • 서승아 (선문대학교 수산생명의학과) ;
  • 조영록 (국립수산과학원 서해수산연구소) ;
  • 김준환 (국립수산과학원 서해수산연구소)
  • Kim, Jin-Young (Department of Aquatic Life and Medical Science, Sun Moon University) ;
  • Sung, GheeHyun (Department of Aquatic Life and Medical Science, Sun Moon University) ;
  • Lim, Lok-Ji (Department of Aquatic Life and Medical Science, Sun Moon University) ;
  • Seo, Seung-A (Department of Aquatic Life and Medical Science, Sun Moon University) ;
  • Cho, Yeong-Rok (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Jun-Hwan (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 투고 : 2018.03.15
  • 심사 : 2018.04.30
  • 발행 : 2018.06.30

초록

본 연구는 넙치 치어(평균 체장 $13.3{\pm}1.6cm$, 평균 체중 $25.6{\pm}3.7g$)를 수중 6가크롬에 10일간 0, 0.5,1.0, $2.0mg\;L^{-1}$의 농도로 노출시켜 독성영향 판단하기 위해 수행되었다. 넙치 hemoglobin과 hematocrit와 같은 혈액학적 성상은 수중 크롬노출에 의해 유의적으로 감소하였다. 혈장 무기성분인 calcium과 magnesium은 크롬노출에 의해 유의적인 변화는 나타나지 않았다. 혈장 무기성분인 glucose와 cholesterol과 같은 $1.0mg\;L^{-1}$ 이상의 크롬노출에 의해 유의적으로 증가하였지만, total protein은 유의적인 변화는 나타나지 않았다. 혈장 효소성분인 AST, ALT, ALP는 크롬노출에 의해 유의적인 증가가 나타났다. 본 실험의 결과는 수중 크롬노출은 넙치의 혈액 및 혈장성분에 유의적인 변화를 유발하며, 이러한 지표의 변화는 수중 크롬노출의 독성영향을 판단하는 주요한 지표가 될 것이다.

Paralichthys olivaceus (mean length, $13.3{\pm}1.6cm$; mean weight, $25.6{\pm}3.7g$) were exposed to waterborne hexavalent chromium at different concentrations (0, 0.5, 1.0, and $2.0mg\;L^{-1}$) for 10 days. Hematological parameters such as hemoglobin and hematocrit of P. olivaceus were significantly decreased after waterborne chromium exposure. There were no significant alterations in inorganic plasma components, calcium, or magnesium after waterborne chromium exposure. Organic plasma components such as glucose and cholesterol levels were significantly increased after exposure to chromium at concentration over $1.0mg\;L^{-1}$. However, significant change in total protein was not observed. Enzymatic plasma components such as aspartate aminotransferase (AST), alanine aminotransaminase (ALT), alkaline phosphatase (ALP) levels were significantly increased after chromium exposure. Results of this study indicate that waterborne chromium exposure can cause significant alterations in hematological parameters and plasma components of P. olivaceus. Such changes in parameters could be used as reliable indicators for toxic effects of waterborne chromium exposure.

키워드

참고문헌

  1. Al-Akel AS and MJK Shamsi. 1996. Hexavalent chromium: Toxicity and impact on carbohydrate metabolism and haematological parameters of carp (Cyprinus carpio L.) from Saudi Arabia. Aquat. Sci. 58:24-30. https://doi.org/10.1007/BF00877638
  2. Carvalho CS and MN Fernandes. 2006. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251:109-117. https://doi.org/10.1016/j.aquaculture.2005.05.018
  3. Castro MP, FR Moraes, RY Fujimoto, C Cruz, MA Belo, MAA Moraes and JRE Moraes. 2014. Acute toxicity by water containing hexavalent or trivalent chromium in native Brazilian fish, Piaractus mesopotamicus: Anatomopathological alterations and mortality. Bull. Environ. Contam. Toxicol. 92:213-219. https://doi.org/10.1007/s00128-013-1174-5
  4. Chon CM, SH Moon, JS Ahn, YS Kim, JH Won and KH Ahn. 2007. Fate and transport of Cr (VI) contaminated groundwater from the industrial area in Daejeon. Econ. Environ. Geol. 40:403-418.
  5. Firat O and F Kargin. 2010. Individual and combined effects of heavy metals on serum biochemistry of Nile Tilapia Oreochromis niloticus. Arch. Environ. Contam. Toxicol. 58:151-157. https://doi.org/10.1007/s00244-009-9344-5
  6. Han DS, SW Jeon, SJ Yang, BN Choi, SH Suk, GY Hong and HJ Song. 2006. The effect of poncirin on hexavalent chromium in HIN3T3 fibroblasts in vitro. Korea J. Herbol. 21:101-107.
  7. Kim GU, HS Jang, JY Seo and SM Lee. 2005. Effect of feeding frequency of extruded pellet on growth and body composition of juvenile flounder, Paralichthys olivaceus during the winter season. J. Aquacult. 18:31-36.
  8. Kim JH, HJ Park, IK Hwang, DH Kim, CW Oh, JS Lee and JC Kang. 2016. Alterations of hematological parameters, plasma constituents and antioxidant responses in the sablefish Anoplopoma fimbria depending on salinity. Korean J. Fish. Aquat. Sci. 49:830-837.
  9. Kim JH and JC Kang. 2016a. Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium ($Cr^{6+}$) exposure. Ecotox. Environ. Safe. 125:78-84. https://doi.org/10.1016/j.ecoenv.2015.12.001
  10. Kim JH and JC Kang. 2016b. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium ($Cr^{6+}$) concentrations. Environ. Toxicol. Pharmacol. 41:152-158. https://doi.org/10.1016/j.etap.2015.12.001
  11. Kim JH and JC Kang. 2017. Effects of dietary chromium exposure to rockfish, Sebastes schlegelii are ameliorated by ascorbic acid. Ecotox. Environ. Safe. 139:109-115. https://doi.org/10.1016/j.ecoenv.2017.01.029
  12. Kim JH, KW Kim, SH Bae, SK Kim, SK Kim and JH Kim. 2017. Alterations in hematological parameters and antioxidant responses in the biofloc-reared flatfish Paralichthys olivaceus following ammonia exposure. Korean J. Fish. Aquat. Sci. 50:750-755.
  13. Kumari K, N Ranjan and RC Sinha. 2011. Multiple biomarker response in the fish, Labeo rohita due to hexavalent chromium. pp. 155-158. In Proceedings of the 2nd International Conference on Biotechnology and Food Science. vol. 7. IACSIT Press.
  14. Kuykendall JR, KL Miller, KN Mellinger and AV Cain. 2006. Waterborne and dietary hexavalent chromium exposure causes DNA-protein crosslink (DPX) formation in erythrocytes of largemouth bass (Micropterus salmoides). Aquat. Toxicol. 78:27-31. https://doi.org/10.1016/j.aquatox.2006.01.019
  15. Lee JS and HT Chon. 2004. Human risk assessment of toxic heavy metals around abandoned metal mine sites. Econ. Environ. Geol. 37:73-86.
  16. Lushchak OV, OI Kubrak, MZ Nykorak, KB Storey and VI Lushchak. 2008. The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione. Aquat. Toxicol. 87:108-114. https://doi.org/10.1016/j.aquatox.2008.01.007
  17. Matsumoto ST, MS Mantovani, MIA Malaguttii, AL Dias, IC Fonseca and MA Marin-Mrales. 2006. Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet. Mol. Biol. 29:148-158. https://doi.org/10.1590/S1415-47572006000100028
  18. Mazon AF, EAS Monteiro, GHD Pinheiro and MN Fernadez. 2002. Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Braz. J. Biol. 62:621-631. https://doi.org/10.1590/S1519-69842002000400010
  19. Nam AR, JA Park, TG Do, JW Choi, US Choi, KN Kim, ST Yun and SH Lee. 2017. Chromium (VI) removal from aqueous solution using acrylic ion exchange fiber. J. Korean Soc. Environ. Eng. 39:112-117. https://doi.org/10.4491/KSEE.2017.39.3.112
  20. Oner M, G Atli and M Canli. 2008. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ. Toxicol. Chem. 27:360-366. https://doi.org/10.1897/07-281R.1
  21. Park EJ, MS Kang, DS Kim and KS Park. 2006. Induction of oxidative stress by hexavalent chromium in human bronchial epithelial cells (BEAS-2B). J. Environ. Toxicol. 21:357-363.
  22. Park HS. 1996. Formation of reactive oxygen species and Cr(V) entities in chromium (VI) exposed A549 cells. Korean J. Environ. Toxicol. 11:49-57.
  23. Rogers JT, JG Richards and CM Wood. 2003 Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 64:215-234. https://doi.org/10.1016/S0166-445X(03)00053-5
  24. Shaheen T and T Akhtar. 2012. Assessment of chromium toxicity in Cyprinus carpio through hematological and biochemical blood markers. Turk. J. Zool. 36:682-690.
  25. Vutukuru SS. 2003. Chromium induced alterations in some biochemical profiles of the Indian major carp, Labeo rohita (Hamilton). Bull. Environ. Contam. Toxicol. 70:118-123. https://doi.org/10.1007/s00128-002-0164-9
  26. Vutukuru SS. 2005. Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita. Int. J. Environ. Res. Public Health 2:456-462. https://doi.org/10.3390/ijerph2005030010