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Abstract 
Cloud computing, also known as “country as you go”, is used to turn any computer into a dematerialized 
architecture in which users can access different services. In addition to the daily evolution of stakeholders’ 
number and beneficiaries, the imbalance between the virtual machines of data centers in a cloud environment 
impacts the performance as it decreases the hardware resources and the software’s profitability. Our axis of 
research is the load balancing between a data center’s virtual machines.  It is used for reducing the degree of 
load imbalance between those machines in order to solve the problems caused by this technological evolution 
and ensure a greater quality of service. Our article focuses on two main phases:  the pre-classification of tasks, 
according to the requested resources; and the classification of tasks into levels (‘odd levels’ or ‘even levels’) in 
ascending order based on the meta-heuristic “Bat-algorithm”. The task allocation is based on levels provided 
by the bat-algorithm and through our mathematical functions, and we will divide our system into a number 
of virtual machines with nearly equal performance. Otherwise, we suggest different classes of virtual 
machines, but the condition is that each class should contain machines with similar characteristics compared 
to the existing binary search scheme. 
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1. Introduction 

Cloud computing allows users to access different platforms, infrastructures, and software as services, 
allowing one to take advantage of all these technologies without requiring extensive information 
technology (IT) expertise. The cloud can reduce the information system’s cost through virtualization 
technologies [1]. Cloud computing is a new computer model whose purpose is to suggest the IT services 
into requested services (on-demand). The goal is to allow services to be accessible from anywhere, 
anytime, and by anyone (country as you go). The real novelty of the cloud is its systematic approach. 
One of the cloud’s drawbacks, however, is that the cloud users' data are stored on the cloud provider. 
Consequently, there could be unauthorized access to data [2]. With cloud computing technology, users 
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can have access to many services without being forced to manage the underlying infrastructure, which 
is often complex. The adoption of this model raises many challenges including quality of service (QoS) 
about the provided services, particularly concerning the load balancing between virtual machines [3]. 
Task processing and allocation division between a data center’s virtual machines are made through load 
balancing algorithms, statics, and dynamics [4,5] under the supervision of a data center’s controller. 
The data center is an aggregation between multiple physical servers, and it receives cloud service clients’ 
requests in order to execute it by using its own virtual machine (VM) in a sequential or parallel way. 
Sharing resources is among the strengths of data centers in cloud computing. VMs are virtual units that 
have a specific performance determined by the cloud provider, such as the capacity of memory storage 
or its processor’s performance for tasks processing [6]. The load balancing algorithm are classified it 
into two types—static and dynamic. They are used to distribute the work load among existing VMs 
under the direction of a data center controller [7]. The cloud providers face challenges regarding the 
quality service due to the following causes: 
― The complexity of the cloud infrastructure 
― The weaknesses of load balancing algorithms 
― The variety of stakeholders whose role is to execute client requests [8,9]. 

 
This article will suggest a load balancing improvement between a data center’s VMs in order to 

ensure a greater QoS and to maximize the use of provided resources. 
Our improvement has two main phases. The first phase is the classification of tasks into levels (‘odd 

levels’ or ‘even levels’) in ascending order based on the meta-heuristic “Bat-algorithm”, and the second 
phase focuses on the tasks’ allocation according to the provided levels by the Bat-algorithm. Through our 
mathematical functions, we will divide the data center into a number of VMs with similar performance. 

Our new load balancing approach allows the cloud service’s providers to maximize the use of their 
equipment resources and software, but it also serves to avoid most problems caused by the older static 
and dynamic load balancing algorithms [2,9]. 

In the second section of this article, we will present a state-of-the-art advancement on load balancing 
algorithms and meta-heuristic algorithms. The third and fourth sections will present our proposed 
model and the results obtained, respectively. Finally, a conclusion will be made in the fifth section. 

 
 

2. State-of-the-Art 

Following our recent research performed on the various static and dynamic load balancing 
algorithms [10], as subsequent results of the extension of the study presented in [2], we try to 
demonstrate the weaknesses and disadvantages of existing load balancing, especially when they increase 
[1]. Thus, our proposal is to design and model a new approach of load balancing by running together 
one of the meta-heuristic algorithms presented in this state-of-the-art model. In our model, the meta-
heuristic algorithms and some load balancing algorithms from the two categories (static and dynamic) 
will be presented in order to choose the meta-heuristic that suits with Phase 1 of our implementation. 

 
2.1 Load Balancing Algorithms 
 

Load balancing algorithms are used to distribute new requests of users in a data center between the 
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VMs, according to each technical [7,11], in order to guarantee an equal number of tasks allotted to each 
machine. According to the study presented on these algorithms in our model, we find that there are two 
types of algorithms: the static and the dynamic [12,13]. Before assigning tasks to the emphasized VMs, 
these algorithms remain uninterested in the task characteristics and, therefore, the degree of load 
unbalance between the VMs as the load increases. 

 
2.1.1 Static algorithms 
 

The statics load balancing algorithms is an assignment from a set of tasks to a set of resources which 
can take either a deterministic or a probabilistic form [4]. In addition, static approaches are defined 
usually in the design or implementation of systems [13]. Their main drawback is that the current state 
of the system is not considered when making the decisions and therefore it is not a suitable approach in 
systems such as distributed systems where most states of the system changes dynamically. We will 
present some of these algorithms as follow. 

 
 Throttled load balancing algorithm  
This algorithm ceases the state of the virtual machine to find out whether or not it is available for the 

new allocation. The algorithm then sends the acknowledged VM identifier (ID) to the data center 
controller for a new allocation and the achievement of the task. When the task processing is fulfilled, the 
virtual machine sends the result to the data center controller, which notifies the algorithm for an 
allocation cut-off [14]. 

 
 Central manager algorithm 
The central load manager assigns tasks to a VM in each new allocation with a minimum load 

compared to the other machines. From time to time, it updates the system’s load status as it experiences 
changes. This status allows the data center to make the correct load balancing decision when it is 
creating new tasks [10]. 

 
 Active monitoring load balancer 
The active monitoring loan balancer is an algorithm that counts the minimum number of tasks 

assigned to each virtual machine and sends its ID to the data center controller, which notifies the 
algorithm to adjust the allocation and incrementation in its table with the new number of tasks assigned 
to the machine owning the identified ID [14]. 

 
 Round robin algorithm 
This task allocation order is based on the FCFS technical [15]. Requests are distributed among VMs 

in turns using a data center controller regardless of the different allocated tasks characteristics [16]. This 
algorithm is known for its fair allocation of the VMs to all nodes [17], but it doesn’t have control over 
the workload distribution. 

 
 Weighted round robin algorithm 
This algorithm is similar to the ‘round robin’ in a sense that the manner by which requests are 

assigned to the nodes is still cyclical, except that the node with the higher specifications will be given a 
greater number of requests [18]. 



Load Balancing in Cloud Computing Using Meta-Heuristic Algorithm 

 

572 | J Inf Process Syst, Vol.14, No.3, pp.569~589, June 2018 

 Threshold algorithm 
In this algorithm, the processes are assigned immediately to hosts that are being locally created. 

While keeping a copy of the system’s load, the processor’s load can either be underloaded, medium, or 
overloaded. The main drawback of this algorithm is the fact that the tasks are allocated locally, which 
means that there can be processors that are overloaded while others are underloaded. That issue will 
cause a significant increase in the execution of the tasks [10]. 

 
 Opportunistic load balancing algorithm  
In this approach, each unexecuted task is appointed randomly to an available node [19]. The main 

goal of this approach is to keep the node’s load full [17]. Even if it provides load balancing, the main 
drawback of this algorithm is its inability to calculate the current execution time of the node.  

 
 Min-Min algorithm   
In this approach, the task having the minimum execution time will be the first to be assigned to a VM 

that can complete the task [20]. This algorithm outperforms other algorithms when there are more 
tasks that have a small execution compared to the number of tasks that have a long execution time [17]. 
The task having the maximum execution time will stay in the queue for an undetermined time period. 
This way of processing will only result in a poor utilization of the VMs [21]. 

 
 Opportunistic load balancing algorithm + Min-Min algorithm  
This approach is a combination of the opportunistic load balancing (OLB) algorithm and the Min-

Min algorithm [22]. The OLB algorithm is used in order to keep every node’s workload full, and the 
LBB algorithm is used to minimize the execution time of the tasks assigned to the nodes. This approach 
is known for its better resource utilization and the enhancement of the work’s efficiency, but it does not 
tolerate error [17]. 

 
 Improved weighted round robin 
This algorithm is based on the ‘weighted round robin’. It is similar in regard to the cyclic tasks 

allocation, except that it considers the priority and the length of the task to choose the most suitable 
VM [23]. 

 
A general disadvantage of all static schemes is that the final selection of a host for process allocation is 

made when the process is created and cannot be changed during process execution to make changes in 
the system load. 

 
2.1.2 Dynamic algorithms 
 

Unlike static algorithms, dynamic algorithms consider the actual load of the VMs [24]. The goal of 
the dynamic algorithms is to decrease the number of errors caused by the static algorithms [11]. Some 
of these algorithms are presented below. 

 
 Central queue algorithm 
The data center controller has a main queue in which tasks are classified in first-in, first-out (FIFO) 

order. If a virtual machine goes into the “underload” status, this main queue sends a request for a new 
task allocation to the data center controller, which deletes the task from the queue and sends it directly 
to the specified recognized machine [10]. 
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 Local queue algorithm 
Under this algorithm, all VMs get local queues, and, when they go into underload mode, it looks for 

other tasks to allocate from the other further away VMs. The advantage of this algorithm is the dynamic 
migration and efficient allocation of all the tasks loaded in the data center controller to the VMs [25]. 

 
 Mini time processing load balancer 
The architect of this algorithm has improved the design of the ‘Efficient response time load balancer’ 

algorithm in a new one called ‘Processing time load balancer’, which considers the current state of the 
VM workload through the processing time, which is a main metric of this algorithm [26]. 

 
 Token ring algorithm 
In this algorithm, tokens are moved around the system in order to minimize the system cost. 

Heuristic approach can be used to remove the drawback of token routing algorithm. The Token Ring 
algorithm provides fast and efficient routing decisions. Hence, no communication overhead is 
generated in this approach [27]. 

 
  Least connections 
This algorithm is based on the selection of the service with the least number of active connections to 

ensure that the load of the active requests is balanced on the services. This method is the default method 
because it provides the best performance [28]. 

 
 Weighted least connections 
This algorithm introduces a “weight” component based on the respective capacities of each server. 

Just like the ‘weighted round robin’, each server’s “weight” must be specified beforehand. A load 
balancer that implements the ‘weighted least connections’ algorithm considers two things: the weight 
capacities of each server and the current number of clients currently connected to each server [29]. 

 
 Trust management algorithm  
This algorithm proposes a trust value management for the cloud Infrastructure-as-a-Service (IAAS) 

parameters. The main objectives of this algorithm are to increase the resource utilization and to 
decrease the request response time of the system. It also enhances the QoS based on the proposed 
model, but it does not provide a formal description of the expressed model [30]. 

 
 Cloud friendly load balancing  
This algorithm aims at reducing the energy consumption, timing penalty, and execution time for a 

virtualized environment [31]. 
 
 Two-phase load balancing  
  This algorithm is shown in service nodes, service managers, and request managers [32]. This 

algorithm uses the request manager, which is a bottleneck. It also has a lack of simulation, and it does 
not provide the performance metrics. 

 
 Stochastic hill climbing 
Stochastic hill climbing (SHC) is a variant of Hill Climbing that deals with the bottleneck problem. 

Unlike other algorithms, the SHC gives a better performance than the FCFS and ‘round robin’ 
algorithms, but it faces a lack of resources utilization [33]. 
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 L3B algorithm  
 This algorithm is placed between users and cloud nodes. L3B improves the cloud performance and 

reduces power consumption and customer cost through a mechanism that initializes a suitable VM if 
the incoming workload exceeds beyond a certain threshold and switch-off VM if the workload 
decreases in compression with a certain threshold [34]. 

 
 Cloud partition load balancing  
Cloud partition load balancing aims at improving the efficiency in the public cloud environment. The 

algorithm uses algorithms with low complexity for underloaded situations in partitions. Unfortunately, 
there are neither simulations nor implementations of this solution [35]. 

 
 VM-based two-dimensional load management  
This algorithm reduces system overhead by reducing migration. However, it is considered only for 

applications with seasonal attribute change, which is not extendable for a real system. This algorithm 
also suffers from the absence of resources utilization [36]. 

 
 DAIRS  
 This approach aims at balancing the workload in data centers by relying on three parameters: CPU, 

memory, and network bandwidth. It also uses four queues: waiting queue, requesting queue, optimizing 
queue, and deleting queue. This approach is not suitable for cloud systems due to the fact that it is 
centralized [37]. 

 
 TOPSIS method 
This method chooses which VM should be selected for migration to a new physical machine and 

which physical machine should host the selected VM [38]. 
 
 EuQoS 
The EuQoS system for scheduling VMs consists of two parts: load balancer and agent-based monitor. 

The load balancer module provides three mechanisms: balance triggering, EuQoS scheduling, and VM 
control. The distribution of workload system is done by weighted round-robin load balancing 
algorithm [39].  

 
 Ant colony optimization 
  This algorithm, as its name states, is based on the behavior of ants to detect the location of 

underloaded or overloaded nodes. It then updates the resources utilization table [40]. This algorithm is 
known for its scalability but has low throughput [17]. 

 
  Bee-MMT 
This approach uses the artificial bee colony algorithm with the feature of minimal migration time 

[41]. 
 
 Improved ABC 
The main purpose of this approach is to suggest a load balancing strategy for cloud computing 

systems. This way, the system’s throughput is improved. The drawback of this method is the lack of 
resources utilization and its instability [42]. 
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 Dynamic adaptive replica strategy (DARS) 
This approach is based around the idea of creating replicas of nodes if they become overloaded and 

stores them in other nodes in order to release their workload [43]. If it can reduce the number of 
overloaded nodes, even if it is a decentralized approach, it does not compromise the access delay. One 
of the main features of DARS is the fact that creating replicas and storing them are up to the nodes 
themselves, depending on the state of their loads. 

 

2.2 Comparison 
 

The performance of various load balancing algorithms is measured by using the following 
parameters. 

 
1) Overload rejection 
If load balancing is not possible, additional overload rejection measures are needed. When the 

overload situation ends, then, first, the overload rejection measures are stopped. After a short guard 
period, load balancing is also closed down [44]. 

 
2) Fault tolerant 
This parameter shows if an algorithm is able to tolerate tortuous faults or not. It enables an algorithm 

to continue operating properly in the event of some failure. If the performance of the algorithm 
decreases, the decrease is proportional to the seriousness of the failure. Even a small failure can cause 
total failure in load balancing [44]. 

 
3) Forecasting accuracy 
Forecasting is the degree of conformity of calculated results to its actual value that will be generated 

after execution. Static algorithms provide more accuracy than dynamic algorithms as in former most 
assumptions are made during compile time and later during execution [44]. 

 
4) Stability  
Stability can be characterized in terms of the delays in the transfer of information between processors 

and the gains in the load balancing algorithm by obtaining faster performance in a specified amount of 
time [44]. 

 
5) Centralized or decentralized 
Centralized schemes store global information at a designated node. All sender or receiver nodes 

access the designated node to calculate the amount of load transfers and also to check that tasks are to 
be sent to or received from. In a distributed load balancing, every node executes balancing separately. 
The idle nodes can obtain load during runtime from a shared global queue of processes [44]. 

 
6) Nature of load balancing algorithms 
Static load balancing assigns load to nodes probabilistically or deterministically without consideration 

of runtime events. It is generally impossible to make predictions of arrival times of loads and processing 
times required for future loads. On the other hand, in dynamic load balancing, the load distribution is 
made during run-time based on current processing rates and network condition. A DLB policy can use 
either local or global information [44]. 
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7) Cooperative 
This parameter shows whether processors share information between them in making the process 

allocation decision other are not during execution. What this parameter defines is the extent of 
independence that each processor has in concluding how it should use its own resources. In the 
cooperative situation, all processors have the accountability to carry out its own portion of the 
scheduling task, but all processors work together to achieve a goal of better efficiency. In the non-
cooperative, individual processors act as independent entities and arrive at decisions about the use of 
their resources without any effect on the rest of the system [44]. 

 
8) Process migration 
 The process migration parameter shows the capacity of a node to transfer a process to another node. 

It decides whether to create it locally or create it on a remote processing element. The algorithm is 
capable of deciding whether to make changes of load distribution during execution of process or not 
[44]. 

 
9) Resource utilization 
Resource utilization includes automatic load balancing. A distributed system may have unexpected 

number of processes that demand more processing power. If the algorithm is capable of utilizing 
resources, they can be moved to underloaded processors more efficiently [44]. 

 
The comparison of some of the load balancing algorithms quoted above is shown in Table 1. 
 

Table 1.  Parametric comparison of load balancing algorithms 

 Overload 
rejection

Fault 
tolerant

Forecasting 
accuracy 

Stability
Dynamic or

static 
Cooperative

Process 
migration

Resource 
utilization 

Centralized or 
decentralized 

Round robin No No More Large S No No Less D 
Local queue Yes Yes Less Small Dy Yes Yes More D 
Central queue Yes Yes Less Small Dy Yes No Less C 
Central manager No Yes More Large S Yes No Less C 
Threshold No No More Large S Yes No Less D 
Least connections No No More Small Dy Yes No Less C 
Token Ring No No More Small Dy Yes Yes More D 
Trust management No No More Small Dy Yes No More D 

Cloud-friendly LB No No More Small Dy Yes Yes More C 
Two-phase LB No No More Small Dy Yes No More C 
Stochastic Hill 
Climbing 

No No More Small Dy Yes No More C 

L38 No No More Small Dy Yes No More C 
Cloud partition LB No No More Small Dy Yes No More C 
VM-based 2 
dimensioned 

No No More Small Dy Yes No More C 

DAIRS No No More Small Dy Yes No More C 
TOPSIS No Yes More Small Dy Yes Yes More D 
EUQOS No No More Small Dy Yes No More C 
Ant Colony 
Optimization 

No No More Small Dy Yes No More C 

Bee-MMT No Yes More Small Dy Yes Yes More D 
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2.3 Meta-Heuristic Algorithm 
 

A meta-heuristic algorithm is formally defined as an interactive generation process that directs the 
exploration and the use of the research space. Meta-heuristic algorithms are among the techniques that 
can be used to solve complex problems, including the load balancing which is highlighted in this 
contribution. 

 
2.3.1. Tabu search 
 

Tabu search is the method that allows tracking of the regions of space solutions that have already 
been searched. It starts from an initial random solution and moves successively to each neighbor of the 
current solution. It stands on the concept of taboo list, which is a special short-term memory formed by 
the previously visited solutions. Indeed, instead of a complete solution, the short-term memory carries 
only some attributes of every solution, and, then, it gives no access to the considered solutions and 
avoids making a loop on the optimal solutions [45,46]. 

 
2.3.2 Genetic algorithm 
 

Genetic algorithms aim to find solutions to difficult problems. Their basic idea is to generate an 
initial random population formed with individual solutions to the problem called chromosomes, and 
then develop it following a number of iterations called generations. During each generation, every 
chromosome is evaluated by some measurement of aptness. To create the next generation, new 
chromosomes, called offspring, are formed either by fusing two current generation chromosomes using 
an operator crossover or by altering a chromosome using an operator mutation. A new generation is 
formed by selection, according to the correctness values, and, in such way, some of the parents and 
children are thrown to maintain a constant size of the population. Regulator chromosomes have higher 
probabilities of being selected. After several generations, the algorithms converge towards the best 
chromosome, which represents the optimal solution to the problem [47]. 

 
2.3.3 Simulated annealing algorithm 
 

The simulated annealing (SA) technique was initially proposed to solve the hard-combinatorial 
optimization problems through controlled randomization by simulating the temperature falling 
procedure of particular systems in thermodynamics. It is a technique to find a better solution for an 
optimization problem by trying random variations of the current solution. The main feature is that a 
worse variation may be accepted as a new solution with a probability, which results in the SA’s major 
advantage over other searching methods. That is, the ability to avoid becoming trapped at local minima. 
Theoretically, SA is able to find the global optimal solution with probability equal to 1 [48]. 

 
2.3.4 Honey bee behavior algorithm 
 

This algorithm aims at realizing a well-balanced load among all VMs in order to maximize the system 
efficiency. The suggested algorithm equally balances the tasks priorities on machines so that the time 
spent in the waiting queue may be minimized [49]. 
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2.3.5 Bat-algorithm 
 

Bat-algorithm is a modeling inspired by the method of echolocation. It is used by “micro-bats” to 
identify the shortest iteration to the “prey”. Developers try to improve this meta-heuristic in order to 
meet the requirements of NP-hard computations [50]: 

1. All bats use echolocation to realize the distance and the difference between obstacles and prey. 
2. To search for prey, bats randomly fly with a velocity (vi) at position (xi), a fixed frequency (fmin), 

and a wavelength and a varying loudness (A0). They can adjust automatically the wavelength (or 
frequency) and the emission rate of the pulse (r2) (0, 1) depending on the closeness to their target prey. 

3. Although the loudness can vary in several ways, we suppose that the loudness fluctuates from a big 
loudness (A0) (positive) to a constant minimal value (Amin). 

The pseudo-code of the Bat-algorithm [50]: 
-Data:  
Initializes bat population position (xi), velocity (vi), pulse rate (ri), loudness (ai), and frequency (fi). 
-Result:  
Optimized Solution 
-Begin 
Set maximum number of iterations and represent it using max. 
while (curr_iter<max) 
Generate new solutions by adjusting position, frequency and velocity 
If (r and >ri) 
Select best solution among all solutions 
Generate a local solution around the selected best solution. 
End if 
If ((r and <ai) && (f(xi) < f(x*)) 
Accept new solutions and increase ri and reduce ai. 
End if 
Rank the bats and find the current best solution, xi. 
End while 
Post-process the results. 
-End 
 
We chose to use the Bat-algorithm to develop our algorithm due to the fact that it is simple, flexible, 

and easy to implement. It can also solve a wide range of problems efficiently. There is also the fact that it 
works well with complicated problems and can give an optimal solution in quick time. 

 
 

3. System Model and Algorithm 

Following our research proposed in [2], we noticed that the load balancing based only on the statute 
of the VM is insufficient to guarantee an ideal balancing. Consequently, we propose in this article a new 
approach of load balancing based on several parameters which influence normal unfolding of the 
burden-sharing and the allowance of the tasks between the VMs of a data center. We separated our 
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modeling in two parts. The first part is the pre-classification of the tasks in an ascending order based on 
the meta-heuristics “Bat-algorithm”. The second is the allowance of the tasks to the numbers of the 
virtual machines having more or less equal performances according to Fig. 1 in lower part. 

 

 
Fig. 1.  Load balancing model. 

 
3.1 Classification of the Tasks Based on Bat-Algorithm 
 

For our first part, we chose to collaborate with the research carried out by [50] and [51]. This choice 
has as objective pre-classifying the spots according to the required levels suitable, and the resources. Let 
us note that our model is adaptable with all the heuristic preset ones in the state of the art or else. It is 
used to seek the level of suitable classification according to Fig. 2 in lower parts. 

 

 
Fig. 2.  Pre-classification based on “Bat-algorithm”. 

 
Stages of our first classification (Bat-algorithm): 
― Initialize the parameters of Bat-algorithm (position, loudness, speed) [15].  
― Initialize the levels of classifications: to assign the first task Ti to a level (R.Ri).  
― Seek second site R.Ri+1 of the task Ti+1 containing: R.Ri +1 in {R.Ri, R.Ri*N, (R.Ri) /N} 
― Use Bat-algorithm in order to detect the ideal site of the following tasks Ti+1 in the levels of 

classification 
― Identify the number of the box of the Ti+1 task with the N while= R.Ri+1/R.Ri 
― Launch the selection of the good sites for the following tasks Ti+1 according to the resources 

requested (R.Ri+1), one using path-algorithm  
― Repeat the operation for all the tasks of the segment requested 
― Pass to the second part of our model of load balancing in lower part 
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3.2 Allocation of the Tasks to the Virtual Machines 
 

Thanks to the Bat-algorithm, the tasks are now redistributed in different levels. The choice of 
maximum number of the levels of classification depends on the different required resources of the 
tasks, which arrive in a data center. The levels presented in the form of a table of temporal scheduling 
have parameters of alterable classification according to the types of the programs arriving at our model 
of load balancing (meta-heuristics wished). 

Whatever the metric of classification (execution time, processing time, standard of the tasks, 
resources requested… etc.), our approach successively begins from a lower level up to a higher level 
(key of our balancing) provided that 

 R.Rs = R.Ri × NR                                          (1) 
 
R.Rs is the metric of a higher-level task (R.R=resource required for the task); R.Ri is the metric of a 

lower level task and NR is the number of ranking of the higher level.  
Example of Fig. 3, if the number of the desired levels is 7, then R.Ri = 1 and R.Rs= 7: 
 

 
Fig. 3. Levels of classification. 

 

Thanks to our technique of pre-classification presented before, we can 
― have an equal distribution of the tasks pre-classified in each level of scheduling. 
― obtain a load balancing between the virtual machines provided that: 
If the number NR (number of the levels) is even: 
Nbr.VMs=Nbr.level/2 
If the number NR is odd: 
Nbr.VMs=(Nbr.level+1)/2 
Nbr.VMs is the number of the virtual machines, Nbr.level is the number of the levels. 
 
In hoping to develop the performance of the load balancing parameters, we undertook a deep study 

on the different existing algorithms. As a result, we found out that they are not taking into 
consideration the parameters of the tasks to balance the load. Thus, we developed a hybrid model based 
on two different, but complimentary, approaches: 

― Pre-classifying tasks by using the meta-heuristic Bat-algorithm, and determining the levels by 
calculating the metric using Eq. (1). 

― Determining the number of sufficient VMs by using the levels found previously, and by taking 
into consideration whether the levels are even or odd. 
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4. Experiment and Results 

4.1 Experiment 
 

In order to evaluate the performance of the suggested load balancing algorithm, we implemented it 
on CloudSim, which presents the different stages of this process. 

We proceeded to the simulation of a data center, initially consisting of several VMs of the same type. 
Each of these will receive a single task with random metric (execution time, response time, etc.). 

In this scenario, we will treat an odd number of tasks (Fig. 4). In each instance, we will have the same 
number of odd tasks distributed on the VMs. 

 

 
Fig. 4. Task allocation. 

 
Now, to explain how our pre-classifications method shown above works, we will take the example of 

time T6 shown in Fig. 4. By performing a task scheduling method, our algorithm will order the tasks in 
different levels in an ascending order depending on the metric used (execution time or response time). 
Then, we will select the number of tasks that will take in charge these tasks. Because we have here an 
odd number of tasks (5), we will follow the rule stated above: Nbr.VMs= (Nbr.levels+1)/2. By following 
that rule, we will only use three virtual machines to take in charge these tasks in this scenario. The 
allocation of the tasks is shown in Fig. 5, where the task with the maximal metric value will be given to a 
VM, then the goal is to give to the other VMs all the tasks whose metric sum will be almost equal to the 
maximal metric value. In this example, the maximal metric value is 150. 

 

 
Fig. 5. Allocation of the tasks to the VMs. 

 
This provides a balance in the distribution of the workload on a lower number of virtual machines 

compared to the initially used machines. The experiments that we conducted consist of executing the 
algorithm presented above. 
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Our algorithm adds a new concept of elasticity, which is the calculation of the optimal number of 
virtual machines (Fig. 6) depending on the received tasks at time T (Fig. 4). 

 

 
Fig. 6. Calculation of the optimal number of VMs. 

 

 
Fig. 7.  Allocation of tasks in their respective level. 
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In this case, we noted that in some scenarios the sum of the metric values of the tasks is not equal to 
the value of the maximal metric. Next, we will explain this scenario by using the T1 in Fig. 4. 

The values of the maximal and minimal metric are 80 and 5, respectively. As a result, we put the task 
whose metric is 5 in Level 1.  Level 2 is then created by respecting the following condition:  level n = n* 
Level 1. This means that Level 2 will only include tasks whose metrics values are around 10. By 
following this condition, we will have 16 levels (Fig. 7), which means that we will be using 8 VMs: 
Nbr.VMs=Nbr.level/2. 

The new maximal metric that will be used is Mmax-i+ Mmin+i, where M is the metric’s value of the 
tasks in the level and i goes from 0 to the number of levels minus 1 in this example, the maximal metric 
will be 85 (Fig. 8). 

At this stage, the allocation of the tasks to the VMs will start.  If there is no task in a Level X, then its 
metric will be 0. In this example, the levels that contain the tasks are the Levels 1, 3, 8, 14, and 16. This 
explains why there are 4 VMs out of 8 VMs that are in standby (T1 in Fig. 6). We then used these VMs 
in standby to treat tasks from the next segment of tasks (Fig. 9). This allows us to clear the task queue, 
which will reduce waiting time. 

 

 
Fig. 8.  Determination of the exact process time. 

 

 
Fig. 9. Time management. 
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4.2 Result 
 

We tested the evolution process of our approach by following three steps: 
 
Step 1: The pre-estimation of the classification metric using the Bat-algorithm. Fig. 10 shows the 

initial variation of the workload. 
Step 2:  Adding the elasticity aspect of our approach to the previous aspect. Fig. 11 shows the impact 

of the determination of the number of VMs based on the levels of the tasks on the workload. 
Step 3: Adding the local queue migration aspect to the previous aspects. The result of the workload is 

shown on Fig. 12. 
 

 
Fig. 10. Initial workload. 

 

 
Fig. 11. Impact of the elasticity on the workload. 

 

 
Fig. 12. Workload results of the local queue migration. 
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The results shown above are resumed by Fig. 13 to show the positive impact of the full utilization of 
our approach on the workload. They are explained as follows. 

 

 
Fig. 13. Results of the positive impact of the full utilization of our approach. 

 
The curves show that our new algorithm provides better results in terms of workload. We notice that 

it meets the performance criteria of a load balancing algorithm. Indeed, the various spikes that have 
been recorded at the beginning of the curve in purple reflect the maximization of the use of resources, 
which fluidizes subsequently the waiting line management. Based on the curves and the data from both 
Figs. 4 and 6, we notice that the algorithm uses at time T the exact optimal number required in terms of 
virtual machines. 

 
 

5. Conclusions 

Nowadays, the number of cloud users is growing exponentially. This fast growth leads to many QoS 
issues regarding load balancing. In an attempt to find a solution which allows better load balancing, we 
propose a novel load balancing model, which is based on two main parts. The conjunction of these parts 
allows us to obtain a complete load balancing model. Our approach will pre-classify the entry 
instructions through any meta-heuristic algorithm, which is dedicated to the pre-estimation of a metric 
that can be used as a classification parameter. Our approach is adaptable with any meta-heuristic and 
should give better load balancing results. Here, we chose Bat-algorithm. Our model will propose the 
most efficient number of VMs to execute all the tasks. Our approach allocates tasks to VMs with the 
guarantee of equal load distribution and increasing the total number of possible allocations in series or 
parallel mode, depending on the levels of the tasks. Finally, our approach will manage the local queue.  
It can also migrate tasks of one segment to a previous one in order to prevent overloaded and standby 
VMs. Our next work will be a comparative study between our approach and different existing load 
balancing algorithms. 
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