DOI QR코드

DOI QR Code

아세틸화 구연산의 폴리염화비닐에 대한 상용성의 연구

Investigation of Compatibility of Acetylated Citrates for Plasticized Poly(vinyl chloride)

  • 박창규 (한양대학교 유기나노공학과) ;
  • 김하늘 (한양대학교 유기나노공학과) ;
  • 윤경원 (한양대학교 유기나노공학과) ;
  • 김성훈 (한양대학교 유기나노공학과)
  • Park, Chang Kyu (Department of Organic and Nano Engineering, Hanyang University) ;
  • Kim, Haneul (Department of Organic and Nano Engineering, Hanyang University) ;
  • Yun, Gyeong Won (Department of Organic and Nano Engineering, Hanyang University) ;
  • Kim, Seong Hun (Department of Organic and Nano Engineering, Hanyang University)
  • 투고 : 2018.04.24
  • 심사 : 2018.06.02
  • 발행 : 2018.06.30

초록

Plasticized poly(vinyl chloride) (PVC) is widely used in industrial products because of its low price and various mechanical properties. The mechanical properties of PVC can be easily altered by adding plasticizers, changing rigid PVC into flexible PVC. However, growing concerns about the migration of phthalate-derived plasticizers, which can act as endocrine disruptors, have led to extensive research into alternative materials. In this work, plasticized PVC was prepared using acetylated citrate plasticizers and their potential to replace commercial phthalate derived plasticizers was investigated. Plasticized PVC was prepared by melt compounding the premixed plastisol using a twin-screw extruder. The compatibility of acetylated citrate plasticizers with PVC was compared with different commercial plasticizers by means of rheology and spectroscopy. The thermal stability and plasticizing ability of citrate plasticizers were evaluated using thermogravimetric analysis (TGA) and tensile modulus analysis, respectively. Acetylated citrates showed promising thermal and mechanical properties, making them a possible alternative to phthalate plasticizers.

키워드

참고문헌

  1. D. F. Cadogan and C. J. Howick in "Kirk-Othmer Encyclopedia of Chemical Technology" (Kirk-Othmer Ed.), John Wiley and Sons, New York, 1996.
  2. H. Daniels, "A Brief Overview of Theories of PVC Plasticization and Methods Used to Evaluate PVC-Plasticizer Interaction", J. Vinyl. Addit. Technol., 2009, 15, 219-223. https://doi.org/10.1002/vnl.20211
  3. W. Aiken, T. Alfrey, A. Janssen, and H. Mark, "Creep Behavior of Plasticized Vinylite VYNW", J. Polym. Sci., 1947, 2, 178-198. https://doi.org/10.1002/pol.1947.120020206
  4. J. R. Pena, M. Hidalgo, and C. Miljangos, "Plastification of Poly(vinyl chloride) by Polymer Blending", J. Appl. Polym. Sci., 2000, 75, 1303-1312. https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10<1303::AID-APP12>3.0.CO;2-4
  5. L. G. Krauskopf, "How About Alternatives to Phthalate Plasticizers?", J. Vinyl. Addit. Technol., 2003, 9, 159-171. https://doi.org/10.1002/vnl.10079
  6. S. Park and S. Kim, "Poly(Ethylene Terephthalate) Recycling for High Value Added Textiles", Fash. Text., 2014, 1, 1-17. https://doi.org/10.1186/s40691-014-0001-x
  7. R. R. Kozlowski and T. K. Gallagher, "Performance of DinHexyl Phthalate in Flexible Vinyl Formulations", J. Vinyl. Addit. Technol., 1999, 5, 94-100. https://doi.org/10.1002/vnl.10315
  8. H. Q. Yin, H. B. Zhao, J. M. Courtney, C. R. Blass, R. H. West, and G. D. O. Lowe, "Blood Interactions with Plasticized Poly(Vinyl Chloride): Relevance of Plasticizer Selection", J. Mater. Sci-Mater. M., 1999, 10, 527-531. https://doi.org/10.1023/A:1008912213420
  9. A. P. Tuzum Demir and S. Ultan, "Migration of Phthalate and Non-Phthalate Plasticizers Out of Plasticized PVC Films into Air", J. Appl. Polym. Sci., 2013, 128, 1948-1961.
  10. L. G. Krauskopf, "Prediction of Plasticizer Solvency Using Hansen Solubility Parameters", J. Vinyl. Addit. Technol., 1999, 5, 101-106. https://doi.org/10.1002/vnl.10316
  11. P. Karmalm, T. Hjertberg, A. Jansson, R. Dahl, and K. Anker, "Network Formation by Epoxidized Soybean Oil in Plastisol Poly(Vinyl Chloride)", Polym. Degrad. Stabil., 2009, 94, 1986-1990. https://doi.org/10.1016/j.polymdegradstab.2009.07.029
  12. N. L. Thomas, "Alloying of Poly(vinyl chloride) to Reduce Plasticizer Migration", J. Appl. Polym. Sci., 2004, 94, 2022-2031. https://doi.org/10.1002/app.21129
  13. K. M. McGinty and W. J. Brittain, "Hydrophilic Surface Modification of Poly(Vinyl Chloride) Film and Tubing Using Physiosorbed Free Radical Grafting Technique", Polymer, 2008, 49, 4350-4357. https://doi.org/10.1016/j.polymer.2008.07.063
  14. H. Tai, "Structure and Properties of Poly(Viny1 Chloride)-Triallyl Cyanurate Plastisols", Polym. Eng. Sci., 2001, 41, 998-1006. https://doi.org/10.1002/pen.10801
  15. A. Zoller and A. Marcilla, "Rheometric Study of the Gelation and Fusion Processes of Poly(vinyl chloride-co-vinyl acetate) Plastisols with Different Commercial Plasticizers", J. Vinyl. Addit. Technol., 2012, 18, 1-8. https://doi.org/10.1002/vnl.20290
  16. P. H. Daniels, "Optimization of Plastisol Processes by Dynamic Mechanical Analysis", J. Vinyl. Addit. Technol., 2007, 13, 151-154. https://doi.org/10.1002/vnl.20119
  17. N. Nakajima and D. W. Ward, "Gelation and Fusion Profiles of PVC Dispersion Resins in Plastisols", J. Appl. Polym. Sci., 1983, 28, 807-822. https://doi.org/10.1002/app.1983.070280232
  18. N. Nakajima and C. A. Daniels, "Plastisols of Poly(viny1 Chloride); Particle Size Distribution, Morphology, Rheology, and Mechanism of Aging", J. Appl. Polym. Sci., 1980, 25, 2019-2044. https://doi.org/10.1002/app.1980.070250918
  19. L. Chazeau, J. Y. Cavaille, G. Canova, R. Dendievel, and B. Boutherin, "Viscoelastic Properties of Plasticized PVC Reinforced with Cellulose Whiskers", J. Appl. Polym. Sci., 1999, 71, 1797-1808. https://doi.org/10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E
  20. E. J. Moskala, D. F. Varnell, and M. M. Coleman, "Concerning the Miscibility of Poly(Vinyl Phenol) Blends - FTi.r. Study", Polymer, 1985, 26, 228-234. https://doi.org/10.1016/0032-3861(85)90034-5
  21. M. T. Benaniba, N. Belhanech-Bensemra, and G. Gelbard, "Stabilizing effect of Epoxidized Sunflower Oil on the Thermal Degradation of Poly(Vinyl Chloride)", Polym. Degrad. Stabil., 2001, 74, 501-505. https://doi.org/10.1016/S0141-3910(01)00170-7
  22. L. J. Gonzalez-Ortiz, M. Arellano, M. J. Sanchez-Pena, E. Mendizabal, and C. F. Jasso-Gastinel, "Effect of Stearate Preheating on the Thermal Stability of Plasticized PVC Compounds", Polym. Degrad. Stabil., 2006, 91, 2715-2722. https://doi.org/10.1016/j.polymdegradstab.2006.04.015
  23. A. Jimenez, J. Lopez, L. Torre, and J. M. Kenny, "Kinetic Analysis of the Thermal Degradation of PVC Plastisols", J. Appl. Polym. Sci., 1999, 73, 1069-1079. https://doi.org/10.1002/(SICI)1097-4628(19990808)73:6<1069::AID-APP26>3.0.CO;2-K
  24. J. Bae and S. Kim, "Alkylation of Mixed Micro‐and Nanocellulose to Improve Dispersion in Polylactide", Polym. Int., 2015, 64, 821-827. https://doi.org/10.1002/pi.4858
  25. S. Myoung, S. Im, and S. Kim, "Non‐isothermal Crystallization Behavior of PLA/Acetylated Cellulose Nanocrystal/Silica Nanocomposites", Polym. Int., 2016, 65, 115-124. https://doi.org/10.1002/pi.5038
  26. A. P. Tuzum Demir and S. Ultan, "Degradation Kinetics of PVC Plasticized with Different Plasticizers under Isothermal Conditions", J. Appl. Polym. Sci., 2014, 132, 41579-41591.
  27. P. Karmalm, T. Hjertberg, A. Jansson, and R. Dahl, "Thermal Stability of Poly(Vinyl Chloride) with Epoxidised Soybean Oil as Primary Plasticizer", Polym. Degrad. Stabil., 2009, 94, 2275-2281. https://doi.org/10.1016/j.polymdegradstab.2009.07.019
  28. F. Gong, M. Feng, C. Zhao, S. Zhang, and M. Yang, "Thermal Properties of Poly(Vinyl Chloride)/Montmorillonite Nanocomposites", Polym. Degrad. Stabil., 2004, 84, 289-294. https://doi.org/10.1016/j.polymdegradstab.2003.11.003
  29. N. Burgos and A. Jimenez, "Degradation of Poly(Vinyl Chloride) Plasticized with Non-phthalate Plasticizers under Sterilization Conditions", Polym. Degrad. Stabil., 2009, 94, 1473-1478. https://doi.org/10.1016/j.polymdegradstab.2009.05.004