DOI QR코드

DOI QR Code

Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of Reddish Brown Precipitation Occurring at Osip Stream Drainage, Gangwon-do

강원도 오십천 수계에서 발생하는 적갈색침전물의 중금속 오염, 광물조성 및 분광학적 특성

  • Lim, Jeong Hwa (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Bae, Sungji (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Koh, Sang-Mo (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Gyesoon (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 임정화 (충남대학교 우주.지질학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 배성지 (충남대학교 우주.지질학과) ;
  • 고상모 (한국지질자원연구원 DMR융합연구단) ;
  • 박계순 (한국지질자원연구원 DMR융합연구단)
  • Received : 2018.03.28
  • Accepted : 2018.05.28
  • Published : 2018.06.30

Abstract

This study analyzed precipitation environment, heavy metal concentration, mineral composition, and spectral characteristics associated with heavy metal concentration and mineral composition for the reddish brown precipitates occurred in the drainage of Dogye mining station. The pH of the reddish brown precipitates ranges from 7.59 to 7.94 resulting neutral. XRF analysis reveals that the precipitates has high Fe concentration, and contaminated with Ni, Cu, and Zn. Dolomite, calcite, goethite, magnetite, kaolinite, pyrophyllite, quartz and aluminum isopropoxide were identified based on XRD analysis. As a result of spectral analysis associated with heavy metal contamination, visible reflectance increases and infrared reflectance decreases with a increase in heavy metal concentration. The spectral characteristics of the reddish brown precipitates is turned out to be manifested by goethite, magnetite, kaolinite, pyrophyllite and aluminum isopropoxide.

본 연구는 강원도 도계광업소 수계에 발생한 적갈색침전물을 대상으로 침전환경을 파악하고, 중금속함량, 광물조성 및 그에 따른 분광학적 특성을 분석하였다. 적갈색침전물의 pH 범위는 7.59-7.94로 침전환경은 중성에 해당한다. X선형광분석 결과 철이 평균농도보다 높게 검출되었으며, 니켈, 구리 및 아연의 오염도가 높은 것으로 판명된다. X선회절분석 결과 돌로마이트, 방해석, 침철석, 자철석, 고령토, 엽납석, 석영 및 알루미늄 이소프로폭사이드의 광물이 확인되었다. 중금속 오염에 따른 분광학적 특성을 분석한 결과, 중금속함량이 증가함에 따라 가시광선 영역에서는 반사도가 증가하는 추세를, 적외선 영역에서는 반사도가 감소하는 추세를 보인다. 적갈색침전물의 분광특성은 침철석, 자철석, 고령토, 엽납석 및 알루미늄 이소프로폭사이드에 의해 발현되는 것으로 판단된다.

Keywords

References

  1. Anderson, J.E., and Robbins, E.I. (1998) Spectral reflectance and detection of iron-oxide precipitates associated with acidic mine drainage. Photogrammetric engineering and remote sensing, 64, 1201-1208.
  2. Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of Environment, 113(4), 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  3. Bradl, H. B. (2004) Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1-18. https://doi.org/10.1016/j.jcis.2004.04.005
  4. Carr, R., Zhang, C., Moles, N., and Harder, M. (2008) Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environmental Geochemistry and Health, 30(1), 45-52. https://doi.org/10.1007/s10653-007-9106-0
  5. Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., and Kim, K.W. (2008) Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112(7), 3222-3233. https://doi.org/10.1016/j.rse.2008.03.017
  6. Choe, E.Y., Hong, S.Y., Kim, K.W., Kim, Y.H., and Zhang, Y.S. (2010) Monitoring of Soil Properties using VNIR Spectroscopy. Korean Society of Soil Science and Fertilizer, 94-103 (in Korean).
  7. Choi, S.J., Kim, C.H., and Lee, S.G. (2009) Comparison of the Heavy Metal Analysis in Soil Samples by Bench-Top ED-XRF and Field-Portable XRF. Analytical Science and Technology, 22(4), 293-301 (in Korean and English Abstract).
  8. Clark, R.N., Swayze, G.A., Wise, R., Livo, K.E., Hoefen, T., Kokaly, R.F., and Sutley, S.J. (2007) USGS digital spectral library splib06a. US Geological Survey, Digital Data Series, 231.
  9. Desouza, E.D., Gherase, M.R., Fleming, D.E. B., Chettle, D.R., O’Meara, J.M., and McNeill, F.E. (2017) Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo-Alpha and Delta models. Applied Radiation and Isotopes, 123, 82-93. https://doi.org/10.1016/j.apradiso.2017.02.029
  10. Hauff, P. (2008) An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Spectral International Inc, 80001, 303-403.
  11. Henmi, T., Wells, N., Childs, C.W., and Parfitt, R.L. (1980) Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes. Geochimica et cosmochimica acta, 44(2), 365-372. https://doi.org/10.1016/0016-7037(80)90144-1
  12. Jeong, C.H. and Kim, S.J. (2003) Statistical Modeling on the Sorption of Heavy Metals by Clay Minerals. The Journal of Engineering Geology, 13(3), 369-378.
  13. Jeong, Y.S., Yu, J.H., Koh, S.M., and Heo, C.H. (2014) Spectroscopy of Skarn Minerals in Dangdu Pb-Zn Deposit and Assessment of Skarn Exploration Approaches Employing Portable Spectrometer. J. Miner. Soc. Korea, 27(3), 135-147 (in Korean and English abstract). https://doi.org/10.9727/jmsk.2014.27.3.135
  14. Kang, M.J., Lee, P.K., and Choi, S.H. (2007) Seasonal Variation and Natural Attenuation of Trace Elements in the Stream Water Affected by Acid Mine Drainage from the Abondoned Indae Mine Areas. The Korean Society of Economic and Environmental Geology, 40(3), 277-293 (in Korean and English abstract).
  15. Kim, J.J. and Kim, S.J. (2002) Variations in Geochemical characteristics of the Acid Mine Drainages due to Mineral-Water Interactions in Donghae Mine Area in Taebaek, Korea. The Korean Society of Economic and Environmental Geology, 35(1), 55-66 (in Korean and English abstract).
  16. Kim, J.J. and Kim, S.J. (2003) Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental science and technology, 37(10), 2120-2126. https://doi.org/10.1021/es026353a
  17. Kim, S.O., Jung, Y.I., and Cho, H.G. (2006) Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area. J. Miner. Soc. Korea, 19(3), 171-187 (in Korean and English abstract).
  18. Korea Coal Corporation (KOCOAL), (2016) Geologic condition of Dogye mining station. Available online at: https://www.kocoal.or.kr/page/127.
  19. Korea Coal Corporation (KOCOAL), (2016) General information of Dogye mining station. Available online at: https://www.kocoal.or.kr/page/126.
  20. Lee, C.H., Lee, H.K., and Cho, A.R. (1999) Environmental Geochemistry and Heavy Matal Contamination of Ground and Surface Water, Soil and Sediment at the Konjujeil Mine Creek, Korea. The Korean Society of Economic and Environmental Geology, 32(6), 611-631 (in Korean and English abstract).
  21. Lee, C.H., Lee, H.K., and Yin, J.W. (2001) Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea. The Korean Society of Economic and Environmental Geology, 34(1), 39-53 (in Korean and English abstract).
  22. Lee, H.G. and Choi, Y.S. (2014) A Study on the Soil Contamination (Maps) Using the Handheld XRF and GIS in Abandoned Mining Areas. Journal of the Korean Association of Geographic Information Studies, 17(3), 195-206 (in Korean and English abstract). https://doi.org/10.11108/kagis.2014.17.3.195
  23. Lim, J.H., Yu, J.H., Shin, J.H., Jeong Y.S., Koh, S.M., and Park, G.S. (2017) Heavy Metal Contamination Characteristics and Spectral Characteristics of White Precipitation occuring at Miin Falls Drainage. J. Miner. Soc. Korea, 30(1), 31-43 (in Korean and English abstract). https://doi.org/10.9727/jmsk.2016.30.1.31
  24. Milens, A.R., Fitzpatrick, R.W., Self, P.G., Fordham, A.W., and McClure, S.G. (1992) Natural iron precipitates in a mine retention pond near Jabiru, Northern Territory, Australia. Catena Supplement 21, 233-261.
  25. Mine Reclamation Corp (MIRECO). (2017) 2016 Yearbook of MIRECO statistics. Mine Reclamation Corp. 360p.
  26. Ministry of Environment (ME) and Korea Environment Corporation (KEC). (2015) A Report of Detailed investigation of soil contamination of Abandoned Coal Mine. 692p.
  27. Ministry of Environment (ME) and National Institute of Environmental Research (NIER). (2009) Excavation survey of excellent ecology and landscape Bangtaesan/Unbongsan/Miin Falls. 473p.
  28. National Institute of Environmental Research. (2015) Criteria for river and lake sediment pollution assessment in Korea.
  29. Park, C.Y., Jeoung, Y.J., and Kim, S.K. (2001) Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea. Journal of the Korean earth science society, 22(3), 208-222 (in Korean and English abstract).
  30. Park, Y.S., Kim, J.K., Kim, J., Jang, W.S., Lee, K.H., and Han, M.S. (2002) Environmental Geochemical Characteristics of the Acid Mine Drainage and Stream Sediments in the Abandoned Honam Coal Mine Area, Korea. The Korean Society of Economic and Environmental Geology, 35(3), 241-255 (in Korean and English abstract).
  31. Rossel, RAV. and Behrens, T. (2010) Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1), 46-54. https://doi.org/10.1016/j.geoderma.2009.12.025
  32. Shin, J.H., Yu, J.H., Jeong, Y.S., Kim, S.J., Koh, S.M., and Park, G.S. (2016) Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine. J. Miner. Soc. Korea, 29(3), 89-101 (in Korean and English abstract). https://doi.org/10.9727/jmsk.2016.29.3.89
  33. Song, L., Jian, J., Tan, D.J., Xie, H.B., Luo, Z.F., and Gao, B. (2015) Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. International Journal of Applied Earth Observation and Geoinformation, 34, 1-9. https://doi.org/10.1016/j.jag.2014.06.013
  34. Thompson, A. J., Hauff, P. L., and Robitaille, A. J. (1999) Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy. SEG newsletter, 39(p. 1), 16-27.
  35. USEPA, (2007) Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Available online at: https://www.epa.gov/sites/production/files/2015-12/documents/6200.pdf.
  36. Weindorf, D.C., Paulette, L. and Man, T. (2013) In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environmental pollution, 182, 92-100. https://doi.org/10.1016/j.envpol.2013.07.008
  37. Williams, D.J., Bigham, J.M., Cravotta Iii, C.A., Trainaa, S.J., Anderson, J.E., and Lyon, J.G. (2002) Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Applied Geochemistry, 17(10), 1273-1286. https://doi.org/10.1016/S0883-2927(02)00019-7
  38. Won, C.K., Park, B.K., and Lee, S.H. (1994) Korea Institute of Geology, Mining and Materials. Geological report of the samchok-gosari sheets.

Cited by

  1. 아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험 vol.52, pp.2, 2019, https://doi.org/10.9719/eeg.2019.52.2.129