DOI QR코드

DOI QR Code

Forward Osmosis Membrane to Treat Effluent from Anaerobic Fluidized Bed Bioreactor for Wastewater Reuse Applications

하수재이용을 위한 혐기성 유동상 생물반응기 처리수의 정삼투 여과막의 적용

  • Kwon, Dae-eun (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeonghwan (Department of Environmental Engineering, Inha University)
  • Received : 2018.06.25
  • Accepted : 2018.06.29
  • Published : 2018.06.30

Abstract

The anaerobic fluidized bed bioreactor (AFBR) treating synthetic wastewater to simulate domestic sewage was operated under GAC fluidization to provide high surface area for biofilm formation. Although the AFBR achieves excellent COD removal efficiency due to biological activities, concerns are still made with nutrient such as nitrogen remaining in the effluent produced by AFBR. In this study, forward osmosis membrane was applied to treat the effluent produced by AFBR to investigate removal efficiency of total nitrogen (TN) with respect to the draw solution (DS) such as NaCl and glucose. Permeability of FO membrane increased with increasing DS concentration. About 55% of TN removal efficiency was observed with the FO membrane using 1 M of NaCl of draw solution, but almost complete TN removal efficiency was achieved with 1 M of glucose of draw solution. During 24 h of filtration, there was no permeate flux decline with the FO membrane regardless of draw solution applied.

하수처리 혐기성 유동상 생물반응기(Anaerobic Fluidized Bed Bioreactor : AFBR)는 높은 표면적을 갖는 입상활성탄을 유동 메디아로 적용함으로써 생물막 형성 및 유지에 유리하며 이로 인해 우수한 유기물 제거 효율을 나타내나 처리된 유출수 내의 질소와 같은 영양염류의 잔존이 여전히 문제로 남아있다. 본 연구에서는 AFBR에 의해 처리된 유출수 내의 질소 배제를 위하여 정삼투막(FO membrane)을 유도용액의 종류와 농도에 따라 적용하였다. 실험결과 유출수의 총질소 배제 효율은 FO막에 적용하는 유도용액(draw solution : DS)의 종류 및 농도에 크게 의존하였다. 유도용액 농도가 증가함에 따라 FO막의 수투과량이 증가하였으며, 1 M의 NaCl을 유도용액으로 사용한 경우 총질소 배제 효율은 55%이었으나 1 M의 glucose를 유도용액을 사용한 경우 거의 완벽한 총질소 배제 효율을 나타내었다. AFBR 유출수를 FO막으로 24시간 동안 여과를 진행하였으나 파울링에 의한 수투과량의 감소는 관찰되지 않았다.

Keywords

References

  1. J. Kim, K. Kim, H. Ye, E. Lee, C. Shin, P. L. McCarty, and J. Bae, "Anaerobic fluidized bed membrane bioreactor for wastewater treatment", Environ. Sci. Technol., 45, 576 (2011). https://doi.org/10.1021/es1027103
  2. C. Shin, K. Kim, P. L. McCarty, J. Kim, and J. Bae, "Development and application of a procedure for evaluating the long-term integrity of membranes for the anaerobic fluidized membrane bioreactor (AFMBR)", Water. Sci. Technol., 74, 457 (2016). https://doi.org/10.2166/wst.2016.210
  3. D. Gao, Q. Hu, C. Yao, N. Ren, and W. Wu, "Integrated anaerobic fluidized-bed membrane bioreactor for domestic wastewater treatment", Chem. Eng. J., 240, 362 (2014). https://doi.org/10.1016/j.cej.2013.12.012
  4. K. Ahn, K. Song, E. Choa, J. Cho, H. Yun, S. Lee, and J. Me, "Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process", Desalination, 157, 345 (2003). https://doi.org/10.1016/S0011-9164(03)00415-6
  5. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  6. R. W. Holloway, A. E. Childress, K. E. Dennett, and T. Y. Cath, "Forward osmosis for concentration of anaerobic digester centrate", Water Res., 41, 4005 (2007). https://doi.org/10.1016/j.watres.2007.05.054
  7. M. Qin, H. Molitor, B. Brazil, J. T. Novak, and Z. He, "Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system", Bioresour. Technol., 200, 485 (2016). https://doi.org/10.1016/j.biortech.2015.10.066
  8. T. Y. Cath, S. Gormly, E. G. Beaudry, M. T. Flynn, V. D. Adams, and A. E. Childress, "Membrane contactor processes for wastewater reclamation in space: Part I. Direct osmotic concentration as pretreatment for reverse osmosis", J. Memb. Sci., 257, 85 (2005). https://doi.org/10.1016/j.memsci.2004.08.039
  9. T. Y. Cath, D. Adams, and A. E. Childress, "Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater", J. Membr. Sci., 257, 111 (2005). https://doi.org/10.1016/j.memsci.2004.07.039
  10. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  11. S. Lee, C. Boo, M. Elimelech, and S. Hong, "Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)", J. Membr. Sci., 365, 34 (2010). https://doi.org/10.1016/j.memsci.2010.08.036
  12. S. Yang, F. Yang, Z. Fu, T. Wang, and R. Lei, "Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment", J. Hazard. Mater., 175, 551 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.040
  13. A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes", Desalination, 238, 10 (2009). https://doi.org/10.1016/j.desal.2008.01.030
  14. L. Chen, Y. Gu, C. Cao, J. Zhang, J. W. Ng, and C. Tang, "Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment", Water Res., 50, 114 (2014). https://doi.org/10.1016/j.watres.2013.12.009
  15. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  16. A. Charfi, E. Park, M. Aslam, and J. Kim, "Particle-sparged anaerobic membrane bioreactor with fluidized polyethylene terephthalate beads for domestic wastewater treatment: Modelling approach and fouling control," Bioresour. Technol., 258, 263 (2018). https://doi.org/10.1016/j.biortech.2018.02.093
  17. M. Aslam, P. Yang, P. H. Lee, and J. Kim, "Novel staged anaerobic fluidized bed ceramic membrane bioreactor: Energy reduction, fouling control and microbial characterization", J. Membr. Sci., 553, 200 (2018). https://doi.org/10.1016/j.memsci.2018.02.038
  18. J. R. McCutcheon and M. Elimelech, "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membr. Sci., 284, 237 (2006). https://doi.org/10.1016/j.memsci.2006.07.049
  19. S. Loeb, L. Titelman, E. Korngold, and J. Freiman, "Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane", J. Membr. Sci., 129, 243 (1997). https://doi.org/10.1016/S0376-7388(96)00354-7
  20. A. Achilli, T. Y. Cath, and A. E. Childress, "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 364, 233 (2010). https://doi.org/10.1016/j.memsci.2010.08.010
  21. N. Jeong, S. Kim, and H. Lee, "Evaluating the performance of draw solutions in forward osmosis desalination using fertilizer as draw solution", Membr. J., 24, 400 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.400
  22. S. Kim and H. Lee, "Water reuse of sewage discharge water using fertilizer drawn forward osmosis", Membr. J., 26, 108 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.108
  23. B. Jun, S, Han, Y, Kim, N. Nga, H. Park, and Y. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.132