DOI QR코드

DOI QR Code

Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area

수도권지역의 지상기반 원격탐사자료를 이용한 지표면 태양에너지 산출

  • Jee, Joon-Bum (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Min, Jae-Sik (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Lee, Hankyung (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Chae, Jung-Hoon (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Kim, Sangil (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
  • 지준범 (강릉원주대학교 복사-위성연구소) ;
  • 민재식 (한국외국어대학교 대기환경연구센터) ;
  • 이한경 (한국외국어대학교 대기환경연구센터) ;
  • 채정훈 (한국외국어대학교 대기환경연구센터) ;
  • 김상일 (한국외국어대학교 대기환경연구센터)
  • Received : 2017.11.01
  • Accepted : 2018.06.20
  • Published : 2018.06.30

Abstract

Solar energy is calculated using meteorological (14 station), ceilometer (2 station) and microwave radiometer (MWR, 7 station)) data observed from the Weather Information Service Engine (WISE) on the Seoul metropolitan area. The cloud optical thickness and the cloud fraction are calculated using the back-scattering coefficient (BSC) of the ceilometer and liquid water path of the MWR. The solar energy on the surface is calculated using solar radiation model with cloud fraction from the ceilometer and the MWR. The estimated solar energy is underestimated compared to observations both at Jungnang and Gwanghwamun stations. In linear regression analysis, the slope is less than 0.8 and the bias is negative which is less than $-20W/m^2$. The estimated solar energy using MWR is more improved (i.e., deterministic coefficient (average $R^2=0.8$) and Root Mean Square Error (average $RMSE=110W/m^2$)) than when using ceilometer. The monthly cloud fraction and solar energy calculated by ceilometer is greater than 0.09 and lower than $50W/m^2$ compared to MWR. While there is a difference depending on the locations, RMSE of estimated solar radiation is large over $50W/m^2$ in July and September compared to other months. As a result, the estimation of a daily accumulated solar radiation shows the highest correlation at Gwanghwamun ($R^2=0.80$, RMSE=2.87 MJ/day) station and the lowest correlation at Gooro ($R^2=0.63$, RMSE=4.77 MJ/day) station.

2015년부터 최근까지 차세대도시농림융합기상사업단에서는 수도권에 위치한 도시기상 관측소에서 관측된 기상자료(14소), 운고계(2소) 그리고 마이크로웨이브 라디오미터(MWR, 7소) 자료를 이용하여 태양에너지를 산출하였다. 수도권지역에 위치한 운고계에서 관측된 후방산란계수와 MWR에서 추정된 액상물량을 이용하여 구름광학두께와 운량을 산출하였다. 각각의 원격탐사장비에서 산출된 운량을 태양복사모델에 입력하여 지표면에 도달하는 태양에너지를 계산하였다. 추정된 태양에너지를 관측과 비교한 결과, 중랑과 광화문지점에서는 과소추정이 나타났다. 선형회귀분석한 결과 0.8이하의 기울기를 나타냈고 $-20W/m^2$의 음의 편차와 $120W/m^2$의 평방근오차(RMSE)가 나타났다. 그리고 MWR을 이용하여 추정된 태양에너지의 정확도(평균 결정계수$(R^2)=0.8$)와 오차율(평균 $RMSE=110W/m^2$)이 향상되었다. 월별 산출된 운량과 태양에너지는 운고계를 이용하여 산출하였을 때 운량이 0.09 이상 크게 나타났으며 태양에너지가 $50W/m^2$ 이상 낮게 산출되었다. 지점에 따라 차이는 있었으나 대체로 7월과 9월의 RMSE가 $50W/m^2$ 이상 크게 계산되었다. 결과적으로 일누적 태양에너지는 광화문지점에서 가장 높은 상관성이 나타났고($R^2=0.80$, RMSE=2.87 MJ/Day), 구로지점에서 상관성이 가장 낮았다($R^2=0.63$, RMSE=4.77 MJ/Day).

Keywords

References

  1. Ahn, S. H., Zo, I. S., Jee, J. B., Kim, B. Y., Lee, D. G., and Lee, K. T., 2016, The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region. Journal of Korean Earth Science Society, 37(1), 29-39. (in Korean) https://doi.org/10.5467/JKESS.2016.37.1.29
  2. Chae, J. H., Park, M. S., and Choi, Y. J., 2014, The WISE quality control system for integrated meteorological sensor data, Atmosphere, 24(3), 445-456. (in Korean) https://doi.org/10.14191/Atmos.2014.24.3.445
  3. Chiu, J. C., Holmes, J. A., Hogan, R. J., and O'Connor, E. J., 2014, The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements, Atmospheric Chemistry and Physics, 14, 8389-8401. https://doi.org/10.5194/acp-14-8389-2014
  4. Chiu, J. C., Huang, C. H., Marshak, A., Slutsker, I., Giles, D. M., Holben, B. N., Knyazikhin, Y., and Wiscombe, W. J., 2010, Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations, Journal of Geophysical Research, 115, D14202, doi:10.1029/2009JD013121.
  5. Chiu, J. C., Marshak, A., Huang, C., Varnai, H. T., Hogan, R. J., Giles, D. M., Holben, B. N., O'Connor, E. J., Knyazikhin, Y., and Wiscombe, W. J., 2012, Cloud Droplet Size and Liqud Water Path Retrievals from Zenith Radiance Measurements: examples from the Atmosphric Radiation Measurement Program and the Aerosol Robotic Network. Atmospheric Chemistry and Physics, 12, 10313-10329. https://doi.org/10.5194/acp-12-10313-2012
  6. Chiu, J. C., Marshak, A., Warren, J., Wiscombe, W. J., Valencia, S. C., and Welton, E. J., 2007, Cloud Optical Depth Retrievals from Solar Background "Signals" of Micropulse Lidars, IEEE Geoscience and Remote Sensing Lettetters, 4(3), 456-460. https://doi.org/10.1109/LGRS.2007.896722
  7. Chou, M. D., 1991, The derivation of cloud parameters from satellite-measured radiances for use in surface radiation calculations. Journal of Atmospheric Sciences, 48(13), 1549-1558. https://doi.org/10.1175/1520-0469(1991)048<1549:TDOCPF>2.0.CO;2
  8. Chou, M. D. and M. J., Suarez, 1999, A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606, 15, 40 pp.
  9. Cimini, D., 2013, Mixing layer height retrivals by multichannel microwave radiometer observations. Atmospheric Measurement Techniques, 6, 2941-2951. https://doi.org/10.5194/amt-6-2941-2013
  10. Cimini, D., Campos, E., Ware, R. S., Albers, S., Giuliani, G., Oreamuno, J., Joe, P., Koch, S. E., Cober, S., and Westwater, E. 2011, Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics using Ground-based Microwave Radiometry, IEEE Transactions on Geoscience and Remote Sensing, 1-11.
  11. Cimini, D., Hewison, T. J., Martin, L., Guldner, J., Gaffard, C., and Marzano, F. S., 2006, Temperature and Humidity Profile Retrievals from Ground-based Microwave Radiometer during TUC, Meteorologiche Zeitschrifit, 15(5), 46-56.
  12. Cimini, D., Nelson, M., Guldner, J., and Ware, R., 2015, Forecasting Indices from a ground-based microwave radiometer for Operational Meteorology, Atmospheric Measurement Techniques, 8, 315-333. https://doi.org/10.5194/amt-8-315-2015
  13. Crewell, S., Ebell, K., Lohnrt, U., and Turner, D. D., 2009, Can Liquid Water Profiles be Retrieved from Passive Microwave Zenith, Geophysical Research Letteer, 36, L06803, doi:10.1029/2008GL036934.
  14. Felding, M. D., Chiu, J. C., Holgan, R. J., Feingold, G., Eloranta, E., O'Connor, E. J., and Cadeddu, M. P., 2015, Joint Retrievals of Cloud and Drizzle in Marine Boundary Layer Clouds using Ground-based radar, lidar and zenith radiances, Atmospheric Measurement Techniques, 8, 2663-2683. https://doi.org/10.5194/amt-8-2663-2015
  15. Iqbal, M, 1983, An introduction to solar radiation. Academic Press, New York, 390pp.
  16. Jee, J. B., Kim, Y. D., Lee, W. H. and Lee, K. T., 2010, Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Journal of Korean Earth Sciences Society, 31(7), 720-737. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.720
  17. Jee, J. B., Lee, H., Min, J. S. Chae, J. H. and Kim, S. 2017: Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area, Journal of the Solar Energy Society, 37(6), 103-114. (in Korean)
  18. Jee, J. B., Lee, W. H., Zo, I. S. and Lee, K. T., 2011, Correction of One-layer Solar Radiation Model by Multi-layer Line-by-line Solar Radiation Model. Atmosphere, 21, 151-162. (in Korean)
  19. Jin, Y., Kai, K., Kawai, K., Nagai, T., Sakai, T., Yamazaki, A., Uchiyama, A., Batdorj, D., Sugimoto, N., and Nishizawa, T., 2015, Ceilometer Calibration for retrieval of Aerosol Optical Properties, Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 49-56. https://doi.org/10.1016/j.jqsrt.2014.10.009
  20. Kim, B. G., Schwartz, S. E., Miller, M. A., and Min, Q., 2003, Effective Radius of Cloud Droplets by Ground-based Remote Sensing: Relationship to Aerosol, Journal of Geophysical Research, 108(D23), 4740, doi:10.1029/2003JD003721.
  21. Kim, B. Y., Jee, J. B., Jeong, M. J., Zo, I. S. and Lee, K. T., 2015, Estimation of Total Cloud Amount from Skyviewer Image Data. Journal of Korean Earth Sciences Society, 36(4), 330-340. (in Korean) https://doi.org/10.5467/JKESS.2015.36.4.330
  22. Kim, B. Y., Jee, J. B., Zo, I. S., and Lee, K. T., 2016, Cloud cover retrieved from Skyviewer: A validation with human observations. Asia-Pacific Journal of Atmospheric Sciences, 1-10.
  23. Kim, S., Jee, J. B., Min, J. S., and Park, J. G. 2016, Influence of 3D remote sensing observation data on prediction performance of storm-scale prediction system. Proceedings of the Autumn Meeting of KMS, 2016.10, 410-411. (in Korean)
  24. Knupp, K. R., 2009, Ground-based passive microwave profiling during dynamic weather conditions. Journal of Atmospheric and Oceanic Technology, 26, 1057-1073. https://doi.org/10.1175/2008JTECHA1150.1
  25. Leckner, B., 1978, The Spectral Distribution of Solar Radiation at the Earth's Surface Elements of a Model. Solar Energy, 20, 143-150. https://doi.org/10.1016/0038-092X(78)90187-1
  26. Lee, S. H., Hwang, S. E., Kim, J., and Ahn, M. H., 2017, Characteristics of Cloud Occurrence using Ceilometer Measurements and its Relationship to Precipitation over Seoul, Atmospheric Research, 201, 46-57.
  27. Park, H. I., Zo, I. S., Kim, B. Y., Jee, J. B., and Lee, K. T., 2017, An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region, Journal of Korean Earth Sciences Society, 38(2), 120-140. (in Korean)
  28. Park, M. S., Park, S. H, Chae, J. H., Choi, M. H., Song, Y., Kang, M and Roh, J. W., 2017, High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmospheric Measurement Technology, 10(4), 1575. https://doi.org/10.5194/amt-10-1575-2017
  29. Shangguan, M., Heise, S., Bender, M., Dick, G., Ramatschi, M., and Wickert, J., 2015, Validation of GPS Atmospheric Water Vapor with WVR data in Satellite Tracking Mode, Annual Geophysics, 33, 55-61. https://doi.org/10.5194/angeo-33-55-2015
  30. Sutter, M.., Durr, B. and Philipona, R., 2004, Comparison of two radiation algorithms for surface-based cloud-free sky detection. Journal of Geophysical Research, 109, D17202. https://doi.org/10.1029/2004JD004582
  31. Tan, H., Mao, J., Chen, H., Chan, P. W., Wu, D., Li, F., and Deng, T. 2010, A study of a Retrival Method for Temperature and Humidity Profiles from Microwave Radiometer Observations Based on Principal Component Analysis and Stepwise Regression, Journal of Atmospheric and Oceanic Technology, 28, 378-389.
  32. Turner, D. D., Clough, S. A., Liljegren, J. C., Clouthiaux, E. E., Cady-Pereira, K. E., and Gaustad, K. L., 2007, Retrieving Liquid Water Path and Precipitable Water from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers, IEEE Transactions on Geosciences and Remote Sensing, 45(111), 3680-3690. https://doi.org/10.1109/TGRS.2007.903703
  33. Turner, D. D., Vogelmann, A. M., Austin, R. T., Barnard, J. C., Cady-Pereira, K. J., Chiu, C., Clough, S. A., Flynn, C., Khaiyer, M. M., Liljeren, J., Jhonson, K., Lin, B., Long, C., Marshak, A., Matrosov, S. Y., McFarlane, S. A., Miller, M., Min, Q., Minnis, P., O'Hirok, W., Wang, Z., and Wiscombe, W. J., 2007, Thin Liquid Water Clouds: Their Importance and Our Challenge, Bulletin of American Meteorological Society, 177-189.
  34. Won, H. Y., Kim, Y. H., and Jang, D. E., 2010, Characteristics of Precipitable Water Vapor and Liquid Water Path Retrieved from Ground-based Microwave Radiometric Profiler at Haenam NCIO, Atmosphere, 20(1), 1-12. (in Korean)
  35. Won, H. Y., Kim, Y. H., and Lee, H. S., 2009, An Application of Brightness Temperature Received from a Ground-based Microwave Radiometer to Estimation of Precipitation Occurrences and Rainfall Intensity, Asia-Pacific Journal of Atmospheric Sciences, 45(1), 55-69.
  36. Yang, D., Jirutitijaroen, P., and Walsh, W. M., 2012, Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy, 86(12), 3531-3543. https://doi.org/10.1016/j.solener.2012.07.029
  37. Yang K., Marshak, A., Chiu, J. C., Wiscombe, W. J., Palm, S. P., Davis, A. B., Spangenberg, D. A., Nguyen, L., Spinhirne, J. D., and Minnis, P., 2008, Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, Journal of Atmospheric Sciences, 65, 3513-3527. https://doi.org/10.1175/2008JAS2744.1
  38. Zo, I.S., Jee, J.B., and Lee, K.T., 2014, Development of GWNU (Gangneung-Wonju National University) One-layer Transfer Model for Calculation of Solar Radiation Distribution of the Korea Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 575-584. https://doi.org/10.1007/s13143-014-0047-0