Abstract
Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization has two components; $A_k$ for kernel function of error pairs and the other $B_k$ for kernel function of errors. In this paper, it is analyzed that the first component is to govern gathering close together error samples, and the other one $B_k$ is to conduct error-sample concentration on zero. Based upon this analysis, it is proposed to normalize $A_k$ and $B_k$ with power of inputs which are modified by kernelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples to zero. Through comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of multipath equalization under impulsive noise, their roles and efficiency of the proposed normalization method are verified.
오차 신호에 대해 가우시안 커널이 가지는 과도신호 차단효과를 기반으로 설계된 오차분포와 델타함수 사이의 유클리드 거리(ED)가 충격성 잡음하에서 효과적인 성능준거로 사용되어왔다. ED의 최소화 과정에서 필요한 기울기는 두 가지 성분, 즉, 오차 쌍의 커널함수에 대한 성분$A_k$와 오차 샘플 자체의 커널함수에 대한 성분 $B_k$를 가진다. 이 논문에서는 성분 $A_k$가 오차 샘플들을 서로 결집시키는 역할과 관련되어 있으며, 성분 $B_k$는 오차샘플들의 결집위치가 영(0)이 되는 문제와 관련되어 있다고 분석되었다. 이 분석에 기반하여, 이 논문에서는 오차 샘플간 간격을 좁히는 역할을 강화하고자 $A_k$를 커널 통과된 오차쌍의 전력으로 정규화하고, 오차 샘플들을 0점에 당기는 역할을 강화하고자 $B_k$를 커널 통과된 오차샘플 자체의 전력으로 정규화하는 방안을 제안하였다. 충격성 잡음과 다중경로 페이딩 채널 환경하에서 시뮬레이션을 시행하여, 정상상태의 MSE 가지는 흔들림 정도와 최소 MSE 값을 비교 분석하였다. 그 결과, 제안된 방식이 가지는 효용성과 두 성분의 역할이 분석과 일치함이 규명되었다.