DOI QR코드

DOI QR Code

Hypoglycemic and Hypolipidemic Effects of Jerusalem artichoke Composites in Streptozotocin induced Diabetic Rats

명월초, 여주 및 울금을 포함하는 돼지감자 복합물의 streptozotocin 유발 당뇨쥐에서 혈당강하 및 체내 지질개선에 미치는 영향

  • Hu, Wen-Si (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Lee, Soo-Jung (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Pyo, Jae-Ho (Sancheong of Functional Bean Farming Union Corporation) ;
  • Kim, Sung-Hee (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Sung, Nak-Ju (Department of Food Science and Nutrition, Gyeongsang National University)
  • 호문사 (경상대학교 식품영양학과) ;
  • 이수정 (경상대학교 농업생명과학연구원) ;
  • 표재호 (산청기능성콩영농조합법인) ;
  • 김성희 (경상대학교 식품영양학과) ;
  • 성낙주 (경상대학교 식품영양학과)
  • Received : 2018.01.29
  • Accepted : 2018.05.24
  • Published : 2018.06.30

Abstract

Hypoglycemic and hypolipidemic effects of Jerusalem artichoke composites (JAP) with extracts of G. procumbens (12.5%), M. charantia (12.5%), and C. longa (12.5%) to H. tuberosus concentrate (JA, 50%) were evaluated in streptozotocin (STZ) induced diabetic rats. Rats were divided into seven groups: normal (Normal), diabetic control (Diabetic), group fed G. procumbens extract (0.5 g/kg bw, D-GPE), group fed JAP (0.5 g/kg bw, D-JAP1; 1.5 g/kg bw, D-JAP2), group fed JA (0.5 g/kg bw, D-JA), and group fed Metformin (0.2 g/kg bw, D-MET) as a positive control. The blood glucose levels over 4 weeks were significantly decreased in the D-JAP2 and D-MET groups compared to the other groups after 3 weeks. The serum insulin level was not significant among the groups fed an experimental diet, but the HOMA-IR value was significantly decreased compared to the diabetic control group. AST and ALT activities in the serum were lowest in D-JAP1. Total lipid and triglyceride contents in the serum decreased in the groups fed an experimental diet, and the HDL-C contents of D-GPE, D-JAP1, and D-JAP2 were significantly increased compared to the diabetic control group. Triglyceride contents in the liver tissue were significantly lower in the D-GPE, D-JAP1, and D-JAP2 groups, and hepatic TBARS content was significantly decreased in the D-JAP1 and D-JAP2 groups compared to the diabetic control group. Hepatic antioxidative enzyme levels, such as SOD, catalase, and GSH-Px, were significantly elevated in groups fed an experimental diet compared to the diabetic control group. Therefore, JAP may be more effective than JA in the human body due to its hypoglycemic and hypolipidemic activities.

돼지감자 농축액(JA, 50%)에 명월초(12.5%), 여주(12.5%), 울금(12.5%) 추출물이 혼합된 돼지감자 복합물(JAP)을 streptozotocin (STZ)으로 당뇨 유발된 흰쥐에 4주간 급이하였을 때 혈당강하 및 지질개선에 미치는 영향을 분석하였다. 실험군은 정상군(Normal), 당뇨 대조군(Diabetic), 당뇨 유발된 흰쥐에 명월초 추출물 급이군(D-GPE), 돼지감자 복합물 급이군(0.5 g/kg, D-JAP1; 1.5 g/kg, D-JAP2), 돼지감자 농축액 급이군(D-JA) 및 메타포민 급이군(D-MET)으로 구분하였다. 실험사육 4주 동안 혈당 변화는 D-JAP2군 및 D-MET군에서 3주간 실험식이 급이 후 두드러진 감소현상을 보였다. 혈청 인슐린 함량은 실험식이의 급이에 따른 유의차가 없었으나, HOMA-IR값은 당뇨 대조군에 비해 실험식이 급이군에서 유의적으로 감소되었다. 혈청의 AST 및 ALT 활성은 D-JAP1군에서 가장 낮았다. 혈청의 총 지질 및 중성지방 함량은 당뇨 대조군에 비해 시료 급이군에서 유의적으로 감소되었으며, HDL-콜레스테롤 함량은 당뇨 대조군에 비해 D-GPE, D-JAP1 및 D-JAP2군에서 유의적으로 증가되었다. 간 조직 중 중성지방 함량은 당뇨 대조군에 비해 D-GPE, D-JAP1 및 D-JAP2군에서 유의적으로 감소되었으며, 지질과산화물의 함량은 당뇨 대조군에 비해 D-JAP1 및 D-JAP2군에서 유의적으로 감소되었다. 간 조직의 SOD 및 catalase 수준은 당뇨 대조군에 비해 D-GPE, D-JAP1 및 D-JAP2군에서, GSH-Px 수준은 모든 실험식이 급이군에서 유의적으로 증가되었다. 이상의 결과에서 돼지감자 복합물은 돼지감자 농축액에 비해 혈당강하 및 당뇨로 인한 지질개선에 효과적인 것으로 판단된다.

Keywords

References

  1. Abei, H. 1974. Catalase in vitro methods. Bergmeyer, H. U. ed. Methods of Enzymatic Analysis. Academic Press, Inc., New York, USA. 2, 673-684.
  2. Ahn, M. J., Yuk, H. J., Lee, H. Y., Hwang, C. E., Jeong, Y. S., Hong, S. Y., Kwon, O. K., Kang, S. S., Kim, H. R., Park, D. S. and Cho. K. M. 2015. Effect of the enhanced biological activities and reduced bitter taste of bitter melon (Momordica charantia L.) by roasting. J. Agric. Life Sci. 49, 107-119. https://doi.org/10.14397/jals.2015.49.2.107
  3. Babu, P. S. and Srinivasan, K. 1997. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol. Cell. Biochem. 166, 169-175. https://doi.org/10.1023/A:1006819605211
  4. Bohari, M., Pauliena, S., Muhajir, H., Khozirah, S. and Lajis, N. 2006. Glucose uptake: stimulatory Activity of Gynura procumbens in 3T3-F442A adipocytes. In: Fasihuddin Ahmad, Z.B., Laily Din, Ikram Said (Eds.), Malaysian Medicinal Plants: Chemistry and Biological activity. Universiti Malaysia, Sarawak, Malaysia.
  5. Celik, S., Baydas, G. and Yilmaz, O. 2002. Influence of vitamin E on the levels of fatty acids and MDA in some tissues of diabetic rats. Cell Biochem. Funct. 20, 67-71. https://doi.org/10.1002/cbf.936
  6. Cha, J. Y., Jin, J. S. and Cho, Y. S. 2011. Biological activity of methanolic extract from Ganoderma lucidum, Momordica charantia, Fagopyrum tatricum, and their mixtures. J. Life Sci. 21, 1016-1024. https://doi.org/10.5352/JLS.2011.21.7.1016
  7. Cho, Y. J. and Bang, M. A. 2004. Hypoglycemic and antioxidative effects of dietary sea-tangle extracts supplementation in streptozotocin-induced diabetic rats. Kor. J. Nutr. 37, 5-14.
  8. Choi, K. S. 2013. Effects of coated liposome from Discorea rhizoma extract (DRE)-on hypoglycemic, serum insulin, and lipid levels in streptozotocin-induced. Kor. J. Food Nutr. 26, 310-317. https://doi.org/10.9799/ksfan.2013.26.2.310
  9. Flohe, L., Wolfgang, A. and Gunzler, W. A. 1984. Assay of glutathione peroxidase. Packer L. ed. Methods Enzymology. Academic Press, Inc., New York, USA. 105, 114-121.
  10. Folch, J., Lees, M. and Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-502.
  11. Friedewald, W. T., Levy, R. I. and Fredrickson, D. S. 1972. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
  12. Frings, C. S., Fendley, T. W., Dunn, R. T. and Queen, C. A. 1972. Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clin. Chem. 18, 763-764.
  13. Hassan, Z., Yam, M. F., Ahmad, M. and Yusof, A. P. M. 2010. Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules 15, 9008-9023. https://doi.org/10.3390/molecules15129008
  14. Hyun, M. R. 2012. Effects of curcumin on high glucose-induced podocyte injury. MS dissertation, Soonchunhyang University, Asan, Korea.
  15. Jeon, H. J., Cha, Y. H. and Jang, H. R. 2016. Isolation and rutin quantitative analysis of antioxidants substances from Gynura procumbens extract. J. Welliness 11, 165-466.
  16. Jeong, J. H., Lee, S. H., Hue, J. J., Lee, K. N., Nam, S. Y., Yun, Y. W., Jeong, S. W., Lee, Y. H. and Lee, B. J. 2008. Effect of bitter melon (Momordica charantia) on anti-diabetic activity in C57BL/6J db/db mice. Kor. J. Vet. Res. 48, 327-336.
  17. Joseph, B. and Jini, D. 2013. Antidiabetic effects of Momordia charantia (bitter melon) and its medicinal potency. Asian Pac. J. Trop. Dis. 3, 93-102. https://doi.org/10.1016/S2222-1808(13)60052-3
  18. Kang, S. M., Shim, J. Y., Hwang, S. J., Hong, S. G., Jang, H. E. and Park, M. H. 2003. Effects of Saengshik supplementation on health improvement in diet-induced hypercholesterolemic rats. J. Kor. Soc. Food Sci. Nutr. 32, 906-912. https://doi.org/10.3746/jkfn.2003.32.6.906
  19. Kim, C. G., Kim, S. I. and Shin, H. K. 1993. Effect of fructooligosaccharide-inulin of Jerusalem artichoke on the growth of intestinal microorganisms of pig. Kor. J. Food Sci. Technol. 25, 395-399.
  20. Kim, H. J., Kim, D. I. and Yon, J. M. 2015. Effects of Jerusalem artichoke (Helianthus tuberosus L.) extracts on blood glucose and lipid metabolism in STZ-induced diabetic rats. Kor. J. Clin. Lab. Sci. 47, 203-208. https://doi.org/10.15324/kjcls.2015.47.4.203
  21. Kim, H. S., Kim, T. W., Kim, D. J., Lee, J. S., Kim, K. K. and Choe, M. 2013. Antioxidant activities and ${\alpha}$-glucosidase inhibitory effect of water extracts from medicinal plants. Kor. J. Med. Crop Sci. 21, 197-203. https://doi.org/10.7783/KJMCS.2013.21.3.197
  22. Kim, J. L., Bae, C. R. and Cha, Y. S. 2010. Helianthus tuberosus extract has antidiabetes effects in HIT-T15 cells. J. Kor. Soc. Food Sci. Nutr. 39, 31-35. https://doi.org/10.3746/jkfn.2010.39.1.031
  23. Kim, K. D. 2007. Research of efficacy & stability about mixed medicinal plants extracts. J. Kor. Soc. Cosm. 13, 601-608.
  24. Kim, M. W. 2014. Effect of dietary supplementation with bitter melon on lipids and hepatic enzyme levels in streptozotocin induced diabetic rats. J. East Asian Soc. Diet. Life 24, 759-767.
  25. Kim, S. H. 2008. Effects of green tea a powder on plasma and liver lipid concentration in diabetic rats. MS Thesis, Keimyung University, Daegu, Korea.
  26. Kinalski, M., Sledziewski, A., Telejko, B., Zarzycki, W. and Kinalska, I. 2000. Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes. Acta Diabetol. 37, 179-183. https://doi.org/10.1007/s005920070002
  27. Kwon, G. J., Choi, D. S. and Wang, M. H. 2007. Biological activities of hot water extracts from Euonymus alatus leaf. Kor. J. Food Sci. Technol. 39, 569-574.
  28. Lee, H. J., Moon, J. H., Lee, W. M., Lee, S. G., Kim, A. K., Woo, Y. H. and Park, D. K. 2012. Charantin contents and fruit characteristics of bitter gourd (Momordica charantia L.) accessions. J. Bio-environment Control 21, 379-84. https://doi.org/10.12791/KSBEC.2012.21.4.379
  29. Lee, S. J., Hu, W. S., Pyo, J. H., Ryu, J. H., Kang, D., Jeong, B. Y. and Sung, N. J. 2018. Anti-oxidant and anti-diabetic activities of Jerusalem artichoke composites containing Gynura procumbens, Momordica charantia and Curcuma longa via AMPK activation. J. Sci. Life 28, 26-36.
  30. Lee, S. J., Shin, J. H., Ju, J. C., Kang, S. K. and Sung, N. J. 2013. Hypoglycemic and hypolipidemic effects of Orostachys japonicus with medicinal herbs in streptozotocin-induced diabetic rats. J. Kor. Soc. Food Sci. Nutr. 42, 587-594. https://doi.org/10.3746/jkfn.2013.42.4.587
  31. Lee, W. Y., Ahn, J. K., Park, Y., Park, S. Y., Kim, Y. M. and Rhee, H. I. 2004. Inhibitory effects of proanthocyanidin extracted from Distylium racemosum on ${\alpha}$-amylase and ${\alpha}$-glucosidase activities. Kor. J. Phamacogn. 35, 271-275.
  32. Lim, S. J., Han, H. K. and Ko, J. H. 2003. Effects of edible and medicinal plants intake on blood glucose, glycogen and protein levels in streptozotocin induced diabetic rats. Kor. J. Nutr. 36, 981-989.
  33. Marklund, S. and Marklund, G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  34. Meena, A. K., Bansal, P. and Kumar, S. 2009. Plants-herbal wealth as a potential source of ayurvedic drugs. Asian Pac. J. Trop. Med. 4, 152-170.
  35. Nam, A. M., Kim, J. G., Ham, S. S., Kim, S. J., Chung, M. E. and Chung, C. K. 1999. Effects of Artemisia iwayomogi extracts on antioxidant enzymes in rats administered benzo (${\alpha}$)pyrene. J. Kor. Soc. Food Sci. Nutr. 28, 199-204.
  36. Park, H. S., Kim, W. K., Kim, H. P. and Yoon, Y. G. 2015. The efficacy of lowering blood glucose levels using the extracts of fermented bitter melon in the diabetic mice. J. Appl. Biol. Chem. 58, 259-265. https://doi.org/10.3839/jabc.2015.041
  37. Petnual, P., Sangvanich, P. and Karnchanatat, A. 2010. A lectin from the rhizomes of turmeric (Curcuma longa L.) and its antifungal, antibacterial, and ${\alpha}$-glucosidase inhibitory activities. Food Sci. Biotechnol. 19, 907-916. https://doi.org/10.1007/s10068-010-0128-5
  38. Rao, D. S., Sekhara, N. C., Satyanarayana, M. N. and Srinivasan, M. 1970. Effect of curcumin on serum and liver cholesterol levels in the rat. J. Nutr. 100, 1307-1315. https://doi.org/10.1093/jn/100.11.1307
  39. Shin, J. H., Lee, S. J., Seo, J. K., Lee, H. J., Ju, J. C. and Sung, N. J. 2012. Effect of a combined extract of Orostachys japonicus with medicinal plants on the lipid composition of the liver and kidney from streptozotocin-induced diabetic rats. J. Kor. Soc. Food Sci. Nutr. 41, 510-518. https://doi.org/10.3746/jkfn.2012.41.4.510
  40. Son, H. K., Han, J. H. and Lee, J. J. 2014. Anti-diabetic effect of the mixture of mulberry leaf and green tea powder in rats with streptozotocin-induced diabetes. Kor. J. Food Preserv. 21, 549-559. https://doi.org/10.11002/kjfp.2014.21.4.549
  41. Uchiyama, M. and Mihara, M. 1978. Determination of malondialdehyde precursor in tissues by TBA test. Anal. Biochem. 86, 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  42. Yoo, J. W. 2013. What is needed for early detection of diabetes complications? J. Kor. Diabetes 14, 32-35. https://doi.org/10.4093/jkd.2013.14.1.32
  43. Yoon, J. A. and Son, Y. S. 2009. Effects of fruits and stems of Opuntia ficus-indica on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats. J. Kor. Soc. Food Sci. Nutr. 38, 146-153. https://doi.org/10.3746/jkfn.2009.38.2.146
  44. You, M. K., Kim, M. S., Rhyu, D. Y. and Kim, H. A. 2013. Effect of Curcuma longa L. on the obesity and insulin resistance in Sprague-Dawley rats and db/db mice. Kor. J. Food Preserv. 20, 1-6. https://doi.org/10.11002/kjfp.2013.20.1.1
  45. Zadch, J. N., Rahimi, A., Sarmadil, J. T., Tritschler, H., Rosen, P., Halliwell, B. and Betteridge, D. J. 1997. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 40, 647-653. https://doi.org/10.1007/s001250050729