DOI QR코드

DOI QR Code

Effect of Needle-Like NiO Protecting Layer on NiCrAl Alloy Foam by Controlled Oxygen Concentration

산소 농도 제어를 통한 NiCrAl 합금 폼 표면의 침상 NiO 보호층 효과

  • Lee, Young-Geun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이영근 (서울과학기술대학교 신소재공학과) ;
  • 신동요 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2018.04.30
  • Accepted : 2018.05.23
  • Published : 2018.06.27

Abstract

Needle-like NiO protecting layers on NiCrAl alloy foam, used as support for hydrogen production, are introduced through electroplated Ni and subsequent microwave annealing. To improve the stability of the NiCrAl alloy foam, oxygen concentration of microwave annealing to form a needle-like NiO layer with good chemical stability and corrosion resistance is controlled in a range of 20 and 50 %. As the oxygen concentration increases to 50 %, needle-like NiO forms a dense coating layer on the NiCrAl alloy foam; this layer formation can be attributed to accelerated growth of the (200) plane. In addition, the increased oxygen concentration causes increased NiO/Ni ratio of the resultant coating layer on NiCrAl alloy foam due to improved rate of the oxidation reaction. As a result, the introduction of dense needle-like NiO layers formed at 50 % oxygen concentration improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the electrolyte and the foam. Thus, needle-like NiO can be proposed as a superb protecting layer to improve the chemical stability of NiCrAl alloy form.

Keywords

References

  1. R. Manabe, S. Okada, R. Inagaki, and K. Oshima, Sci. Rep., 6, 38007 (2016). https://doi.org/10.1038/srep38007
  2. K. S. Go, S. R. Son, S. D. Kim, K. S. Kang, and C. S. Park, Int. J. Hydrogen Energy, 34, 1301 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.062
  3. Y. G. Lee, G. H. An, and H. J. Ahn, Korean J. Mater. Res., 28, 182 (2018). https://doi.org/10.3740/MRSK.2018.28.3.182
  4. L. Barelli, G. Bidini, F. Gallorini, and S. Servili, Energy, 33, 554 (2018).
  5. Y. J. Lee, B. R. Koo, S. H. Baek, M. H. Park, and H. J. Ahn, Korean J. Mater. Res., 25, 391 (2015). https://doi.org/10.3740/MRSK.2015.25.8.391
  6. D. Y. Shin, J. W. Be, B. R. Koo, and H. J. Ahn, Korean J. Mater. Res., 27, 390 (2017). https://doi.org/10.3740/MRSK.2017.27.7.390
  7. D. Y. Sin, E. H. Lee, M. H. Park, and H. J. Ahn, Korean J. Mater. Res., 26, 393 (2016). https://doi.org/10.3740/MRSK.2016.26.7.393
  8. Y. Ding and E. Alpay, Chem. Eng. Sci., 55, 3929 (2000). https://doi.org/10.1016/S0009-2509(99)00597-7
  9. H. M. Fjeld, D. Clark, I. Y. Tirados, R. Zanon, D. C. Martinez, D. Beeaff, S. H. Morejudo, P. K. Vestre, T. Norby, R. Haugsrud, J. M. Serra, and C. Kjolseth, Nat. Energy, 2, 923 (2017). https://doi.org/10.1038/s41560-017-0029-4
  10. A. M. Adris, C. J. Lim, and J. R. Grace, Chem. Eng. Sci., 52, 1609 (1997). https://doi.org/10.1016/S0009-2509(96)00511-8
  11. A. P. Simpon and A. E. Lutz, Int. J. Hydrogen Energy, 32, 4811 (2007). https://doi.org/10.1016/j.ijhydene.2007.08.025
  12. H. Choe and D. C. Dunand, Acta Mater., 52, 1283 (2004). https://doi.org/10.1016/j.actamat.2003.11.012
  13. Q. Pang, Z. Y. Xiu, G. H. Wu, L. T. Jiang, D. L. Sun, and Z. L. Hu, J. Mater. Process Technol., 212, 2219 (2012). https://doi.org/10.1016/j.jmatprotec.2012.06.017
  14. H. Choe and D. C. Dunand, Mater. Sci. Eng., A, 384, 184 (2004). https://doi.org/10.1016/S0921-5093(04)00814-7
  15. B. Kucharczyk, W. Tylus, and L. Kepinski, Appl. Catal., B, 49, 27 (2004). https://doi.org/10.1016/j.apcatb.2003.11.006
  16. X. Yu, S.-T. Tu, Z. Wang, and Y. Qi, J. Power sources, 150, 57 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.027
  17. B.-H. Kang, J. Park, K. Park, and D. Yoo, Korean J. Mater. Res., 26, 714 (2016). https://doi.org/10.3740/MRSK.2016.26.12.714
  18. R. A. Patil, C.-W. Su, C.-J. Chuang, C.-C Lai, Y. Liou, and Y.-R. Ma, Nanoscale, 8, 12970 (2016). https://doi.org/10.1039/C6NR02531E
  19. X. Song and L. Gao, J. Am. Ceram. Soc., 91, 3465 (2008). https://doi.org/10.1111/j.1551-2916.2008.02667.x
  20. M. A. Bhosale and B. M. Bhanage, Adv. Powder Technol., 26, 422 (2015). https://doi.org/10.1016/j.apt.2014.11.015
  21. K.-C. Wang, P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, and T.-F. Guo, ACS Appl. Mater. Interfaces, 6, 11851 (2014). https://doi.org/10.1021/am503610u
  22. R. Betancur, M. Maymo, X. Elias, L. T. Vuong, and J. Martorell, Sol. Energy Mater. Sol. Cells, 95, 735 (2011). https://doi.org/10.1016/j.solmat.2010.10.014
  23. T. Terachi, N. Totsuka, T. Yamada, T. Nakagawa, H. Deguchi, M. Horiuchi, and M. Oshitani, J. Nucl. Sci. Technol., 40, 509 (2003). https://doi.org/10.1080/18811248.2003.9715385
  24. A. Velon and I. Olefjord, Oxid. Met., 56, 415 (2001). https://doi.org/10.1023/A:1012589315800
  25. Q. pang, Z. L. Hu, and D. L. Sun, Vacuum, 129, 86 (2016). https://doi.org/10.1016/j.vacuum.2016.04.018