DOI QR코드

DOI QR Code

HQSAR Study on Imidazo[1,2-b]pyridazine Derivatives as p38 MAP Kinase Antagonists

  • Bhujbal, Swapnil P. (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Keretsu, Seketoulie (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Cho, Seung Joo (Department of Biomedical Sciences, College of Medicine, Chosun University)
  • Received : 2018.05.21
  • Accepted : 2018.06.25
  • Published : 2018.06.30

Abstract

p38 MAP kinase belongs to the Mitogen-activated protein (MAP) kinase family; a serine/threonine kinase. It plays an important role in intracellular signal transduction pathways. It is associated with the development and progression of various cancer types making it a crucial drug target. Present study involves the HQSAR analysis of recently reported imidazo[1,2-b]pyridazine derivatives as p38 MAP kinase antagonists. The model was generated with Atom (A), bond (B), chirality (Ch), and hydrogen (H) parameters and with different set of atom counts to improve the model. An acceptable HQSAR model ($q^2=0.522$, SDEP=0.479, NOC=5, $r^2=0.703$, SEE=0.378, BHL=97) was developed which exhibits good predictive ability. A contribution map for the most active compound (compound 17) illustrated that hydrogen and nitrogen atoms in the ring A and ring B, as well as nitrogen atom in ring C and the hydrogen atom in the ring D provided positive activity in inhibitory effect while, the least active compound (compound 05) possessed negative contribution to inhibitory effect. Hence, analysis of produced HQSAR model can provide insights in the designing potent and selective p38 MAP kinase antagonists.

Keywords

References

  1. K. P. Wilson, M. J. Fitzgibbon, P. R. Caron, J. P. Griffith, W. Chen, P. G. McCaffrey, S. P. Chambers, and M. S.-S. Su, "Crystal structure of p38 mitogen- activated protein kinase", J. Biol. Chem., Vol. 271, pp. 27696-27700, 1996. https://doi.org/10.1074/jbc.271.44.27696
  2. R. J. Davis, "Transcriptional regulation by MAP kinases", Mol. Reprod. Dev., Vol. 42, pp. 459-467, 1995. https://doi.org/10.1002/mrd.1080420414
  3. A. Kaieda, M. Takahashi, T. Takai, M. Goto, T. Miyazaki, Y. Hori, S. Unno, T. Kawamoto, T. Tanaka, S. Itono, T. Takagi, T. Hamada, M. Shira- saki, K. Okada, G. Snell, K. Bragstad, B. C. Sang, O. Uchikawa, and S. Miwatashi, "Structure-based design, synthesis, and biological evaluation of imid- azo[1,2-b]pyridazine-based p38 MAP kinase inhibitors", Bioorg. Med. Chem., Vol. 26, pp. 647-660, 2018. https://doi.org/10.1016/j.bmc.2017.12.031
  4. Z. Wang, P. C. Harkins, R. J. Ulevitch, J. Han, M. H. Cobb, and E. J. Goldsmith, "The structure of mitogen-activated protein kinase p38 at 2.1-A resolution", Proc. Natl. Acad. Sci. U.S.A., Vol. 94, pp. 2327-2332, 1997. https://doi.org/10.1073/pnas.94.6.2327
  5. X. Z. Wang and D. Ron, "Stress-induced phosphor- ylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase", Science, Vol. 272, pp. 1347-1349, 1996. https://doi.org/10.1126/science.272.5266.1347
  6. D. R. Knighton, J. H. Zheng, L. F. Ten Eyck, V. A. Ashford, N. H. Xuong, S. S. Taylor, and J. M. Sow- adski, "Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase", Science, Vol. 253, pp. 407-414, 1991. https://doi.org/10.1126/science.1862342
  7. J. M. Kyriakis and J. Avruch, "Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation", Physiol. Rev., Vol. 81, pp. 807-869, 2001. https://doi.org/10.1152/physrev.2001.81.2.807
  8. P. K. Balasubramanian, A.Balupuri, and S. J. Cho, "3D-QSAR studies on disubstituted dibenzosub- erone derivatives as $p38{\alpha}$ MAP kinase inhibitors using CoMFA and COMSIA", Med. Chem. Res., Vol. 25, pp. 2349-2359, 2016. https://doi.org/10.1007/s00044-016-1642-7
  9. B. Derijard, J. Raingeaud, T. Barrett, I. H. Wu, J. Han, R. J. Ulevitch, and R. J. Davis, "Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms", Science, Vol. 267, pp. 682-685, 1995. https://doi.org/10.1126/science.7839144
  10. J. Raingeaud, A. J. Whitmarsh, T. Barrett, B. Deri-jard, and R. J. Davis, "MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway", Mol. Cell. Biol., Vol. 16, pp. 1247-1255, 1996. https://doi.org/10.1128/MCB.16.3.1247
  11. A. Munshi and R. Ramesh, "Mitogen-activated protein kinases and their role in radiation response", Genes Cancer, Vol. 4, pp. 401-408, 2013. https://doi.org/10.1177/1947601913485414
  12. R. J. Mayer and J. F. Callahan, "p38 MAP kinase inhibitors: A future therapy for inflammatory diseases", Drug Discov. Today Ther. Strateg., Vol. 3, pp. 49-54, 2006.
  13. J. C. Lee, S. Kumar, D. E. Griswold, D. C. Under- wood, B. J. Votta, and J. L. Adams, "Inhibition of p38 MAP kinase as a therapeutic strategy", Immu-nopharmacology, Vol. 47, pp. 185-201, 2000.
  14. M. Clark, R. D. Cramer III, and N. V. Opdenbosch, "Validation of the general purpose tripos 5.2 force field", J. Comput. Chem., Vol. 10, pp. 982-1012, 1989. https://doi.org/10.1002/jcc.540100804
  15. R. Kumar, B. Langstrom, and T. Darreh-Shori, "Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization", Sci. Rep., Vol. 6, p. 31247, 2016. https://doi.org/10.1038/srep31247