DOI QR코드

DOI QR Code

Extracts from the Red Algae Gracilaria vermiculophylla have Antioxidant Effects in Human Bone Marrow Mesenchymal Stem Cells

  • Jeong, Sin-Gu (Department of Biology, College of Natural Science, Chosun University) ;
  • Lee, Jae-Joon (Department of Food and Nutrition, College of Natural Science, Chosun University) ;
  • Kim, Ho-Tae (Department of Biology, College of Natural Science, Chosun University) ;
  • Ahn, Min-Ji (Department of Biology, College of Natural Science, Chosun University) ;
  • Son, Hee-Kyoung (Department of Food and Nutrition, College of Natural Science, Chosun University) ;
  • Lee, Jun Sik (Department of Biology, College of Natural Science, Chosun University) ;
  • Oh, Won Keun (Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University) ;
  • Cho, Tae Oh (Department of Biology, College of Natural Science, Chosun University) ;
  • Cho, Goang-Won (Department of Biology, College of Natural Science, Chosun University)
  • Received : 2018.02.21
  • Accepted : 2018.03.28
  • Published : 2018.06.30

Abstract

The red algae Gracilaria vermiculophylla is widely spread around seaside areas across the globe, and has been used as a food resource in Southeast Asian countries. Previous studies have shown that Gracilaria red algae extracts have beneficial antihypercholesterolemic, antioxidant, anti-inflammatory, and antimicrobial effects. In this study, we investigated the antioxidant effects of Gracilaria vermiculophylla extracts (GV-Ex) on human bone marrow mesenchymal stem cells (hBM-MSCs). The acetone and DMSO/ethanol solvents of the tested GV contain higher total flavonoid and polyphenolic contents that can strongly scavenge reactive oxygen species (ROS). Pre-treatment with GV-Ex protected hBM-MSCs against oxidative stress induced by hydrogen peroxide treatment. The protective effects of GV-Ex treatment were confirmed by MTT assay. The elevated levels of ROS in hBM-MSCs caused by hydrogen peroxide induced oxidative stress were significantly decreased by GV extract treatment. The levels of the antioxidant proteins superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and catalase (CAT) were also restored or protected by GV-Ex treatment, suggesting that GV extracts moderate excess ROS levels and prevent cells from oxidative damage.

Keywords

References

  1. B. Biteau, C. E. Hochmuth, and H. Jasper, "Main-taining tissue homeostasis: dynamic control of somatic stem cell activity", Cell Stem Cell, Vol. 9, pp. 402-411, 2011. https://doi.org/10.1016/j.stem.2011.10.004
  2. J. Pellettieri and A. S. Alvarado, "Cell turnover and adult tissue homeostasis: from humans to planarians", Annu. Rev. Genet., Vol. 41, pp. 83-105, 2007. https://doi.org/10.1146/annurev.genet.41.110306.130244
  3. S. R. Singh, "Stem cell niche in tissue homeostasis, aging and cancer", Curr. Med. Chem., Vol. 19, pp. 5965-5974, 2012. https://doi.org/10.2174/0929867311209065965
  4. J. Voog and D. L. Jones, "Stem cells and the niche: a dynamic duo", Cell Stem Cell, Vol. 6 pp. 103-115, 2010. https://doi.org/10.1016/j.stem.2010.01.011
  5. L. Liu and T. A. Rando, "Manifestations and mechanisms of stem cell aging", J. Cell Biol., Vol. 193, pp, 257-266, 2011. https://doi.org/10.1083/jcb.201010131
  6. D. J. Rossi, C. H. M. Jamieson, and I. L. Weissman, "Stems cells and the pathways to aging and cancer", Cell, Vol. 132, pp. 681-696, 2008 https://doi.org/10.1016/j.cell.2008.01.036
  7. J. F. Passos and T. V. Zglinicki, "Mitochondria, telomeres and cell senescence", Exp. Gerontol., Vol. 40, pp. 466-472, 2005. https://doi.org/10.1016/j.exger.2005.04.006
  8. V. J. Thannickal and B.L. Fanburg, "Reactive oxygen species in cell signaling", Am. J. physiol. Lung Cell. Mol. Physiol., Vol. 279, pp. L1005-1028, 2000. https://doi.org/10.1152/ajplung.2000.279.6.L1005
  9. S.-G. Jeong and G.-W. Cho, "Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells", Biochem. Biophys. Res. Commun., Vol. 460, pp. 971- 976, 2015. https://doi.org/10.1016/j.bbrc.2015.03.136
  10. J. R. Hoidal, "Reactive oxygen species and cell signaling", Am. J. Respir. Cell Mol. Biol., Vol. 25, pp. 661-663, 2001. https://doi.org/10.1165/ajrcmb.25.6.f213
  11. S.-G. Jeong and G.-W. Cho, "Trichostatin A modu-lates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesen-chymal stem cells", Cell Biochem. Funct., Vol. 33, pp. 37-43, 2015. https://doi.org/10.1002/cbf.3084
  12. F. Johnson and C. Giulivi, "Superoxide dismutases and their impact upon human health", Mol. Aspects Med., Vol. 26, pp. 340-352, 2005. https://doi.org/10.1016/j.mam.2005.07.006
  13. P. Vehviläinen, J. Koistinaho, and G. Goldsteins, "Mechanisms of mutant SOD1 induced mitochon-drial toxicity in amyotrophic lateral sclerosis", Fron. Cell. Neurosci., Vol. 8, p. 126, 2014.
  14. K. Watanabe, S. Shibuya, Y. Ozawa, H. Nojiri, N. Izuo, K. Yokote, and T. Shimizu, "Superoxide dis-mutase 1 loss disturbs intracellular redox signaling, resulting in global age-related pathological changes", Biomed Res. Int., Vol. 2014, p. 140165, 2014.
  15. N. Piazza, M. Hayes, I. Martin, A. Duttaroy, M. Grotewiel, and R. Wessells, "Multiple measures of functionality exhibit progressive decline in a paral- lel, stochastic fashion in Drosophila Sod2 null mutants", Biogerontology, Vol. 10, pp. 637-648, 2009. https://doi.org/10.1007/s10522-008-9210-2
  16. I. Mazarrasa, Y. S. Olsen, E. Mayol, N. Marba, and C. M. Duarte, "Global unbalance in seaweed pro-duction, research effort and biotechnology markets", Biotechnol. Adv., Vol. 32, pp. 1028-1036, 2014. https://doi.org/10.1016/j.biotechadv.2014.05.002
  17. C. L. F. De Almeida, H. De S. Falcao, G. R. De M. Lima, C. De A. Montenegro, N. S. Lira, P. F. De Athayde-Filho, L. C. Rodrigues, M. de F. V. De Souza, J. M. Barbosa-Filho, and L. M. Batista, "Bioactivities from marine algae of the genus Gracilaria", Int. J. Mol. Sci., Vol. 12, pp. 4550-4573, 2011. https://doi.org/10.3390/ijms12074550
  18. J.-I. Yang, C.-C. Yeh, J.-C. Lee, S.-C. Yi, H.-W. Huang, C.-N. Tseng, and H.-W. Chang, "Aqueous extracts of the edible Gracilaria tenuistipitata are protective against $H_2O_2$-induced DNA damage, growth inhibition, and cell cycle arrest", Molecules, Vol. 17, pp. 7241-7254, 2012. https://doi.org/10.3390/molecules17067241
  19. O. Folin and W. Denis, "On phosphotungstic-phos-phomolybdic compounds as color reagents", J. Biol. Chem., Vol. 12, pp. 239-243, 1912.
  20. A. Luximon-Ramma, T. Bahorun, M. A. Soobrattee, and O. I. Aruoma, "Antioxidant activities of phe- nolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula", J. Agric. Food Chem., Vol. 50, pp. 5042-5047, 2002. https://doi.org/10.1021/jf0201172
  21. K. Shimada, K. Fujikawa, K. Yahara, and T. Namkamura, "Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion", J. Agric. Food Chem. Vol. 40, pp. 945-948, 1992. https://doi.org/10.1021/jf00018a005
  22. M. Przygodzka, D. Zielinska, Z. Ciesarova, K. Kukurova, and H. Zielinski, "Comparison of meth- ods for evaluation of the antioxidant capacity and phenolic compounds in common spices", LWT - Food Science and Technology, Vol. 58, pp. 321-326, 2014. https://doi.org/10.1016/j.lwt.2013.09.019
  23. C. Kandaswami and E. Middleton, "Free radical scavenging and antioxidant activity of plant flavonoids", in Free Radicals in Diagnostic Medicine, Boston: Springer, pp. 351-376, 1994.
  24. P. Ganesan, C. S. Kumar, and N. Bhaskar, "Anti-oxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds", Bioresour. Technol., Vol. 99, pp. 2717- 2723, 2008. https://doi.org/10.1016/j.biortech.2007.07.005
  25. M. K. Airanthi, M. Hosokawa, and K. Miyashita, "Comparative antioxidant activity of edible Japanese brown seaweeds", J. Food Sci., Vol. 76, pp. C104-111, 2011. https://doi.org/10.1111/j.1750-3841.2010.01915.x
  26. K. H. S. Farvin and C. Jacobsen, "Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast", Food Chem., Vol. 138, pp. 1670-1681, 2013. https://doi.org/10.1016/j.foodchem.2012.10.078
  27. K. Fujimoto, H. Ohmura, and T. Kaneda, "Screening for antioxygenic compounds in marine algae and bromophenols as effective principles in a red algae Polysiphonia ulceolate", Nippon Suisan Gak-kai Shi. Bulletin Of The Japanese Society Of Scientific Fisheries, Vol. 51, pp. 1139-1143, 1985.
  28. K. S. Kumar, K. Ganesan, P. V. Subba Rao, "Anti-oxidant potential of solvent extracts of Kappaphy-cus alvarezii (Doty) Doty - an edible seaweed", Food Chem., Vol. 107, pp. 289-295, 2008. https://doi.org/10.1016/j.foodchem.2007.08.016
  29. H. Huang and D. J. Tindall, "Dynamic FoxO transcription factors", J. Cell Sci., Vol. 120, pp. 2479-2487, 2007. https://doi.org/10.1242/jcs.001222