References
- Baumgartner F, Seitz L, Sprenger GA, Albermann C. 2013. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2'-fucosyllactose. Microbial Cell Factories 12(1): 40. https://doi.org/10.1186/1475-2859-12-40
- Bode L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22(9): 1147-1162. https://doi.org/10.1093/glycob/cws074
- Bode L. 2015. The functional biology of human milk oligosaccharides. Early Human Development 91(11): 619-622. https://doi.org/10.1016/j.earlhumdev.2015.09.001
- Chin YW, Seo NR, Kim JH, Seo JH. 2016. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-L-fucose. Biotechnology and Bioengineering.
-
Chin YW, Kim JY, Kim JH, Jung SM, Seo JH. 2017. Improved production of 2′-fucosyllactose in engineered Escherichia coli by expressing putative
${\alpha}$ -1,2-fucosyltransferase, WcfB from Bacteroides fragilis. Journal of Biotechnology 257: 192-198. https://doi.org/10.1016/j.jbiotec.2016.11.033 - Crane J, Crane JK, Azar SS, Stam A, Newburg DS. 1994. Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells. Journal of Nutrition 124(12): 2358. https://doi.org/10.1093/jn/124.12.2358
- Donovan SM. 2017. Human milk oligosaccharides: Potent weapons in the battle against Rotavirus infection. The Journal of Nutrition 147(9): 1605-1606. https://doi.org/10.3945/jn.117.255836
-
Drouillard S, Driguez H, Samain E. 2006. Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori
${\alpha}$ -1,2-fucosyltransferase in metabolically engineered Escherichia coli cells. Angewandte Chemie 118(11): 1810-1812. https://doi.org/10.1002/ange.200503427 - Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, Dehlink E, Loibichler C, Urbanek R, Szepfalusi Z. 2004. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatric Research 56(4): 536. https://doi.org/10.1203/01.PDR.0000139411.35619.B4
- Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, Urbanek R, Szepfalusi Z. 2010. Prebiotic oligosaccharides: In vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatric Allergy and Immunology 21(8): 1179-1188. https://doi.org/10.1111/j.1399-3038.2010.01062.x
- Endo T, Koizumi S, Tabata K, Ozaki A. 2000. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Applied Microbiology and Biotechnology 53(3): 257-261. https://doi.org/10.1007/s002530050017
- Fierfort N, Samain E. 2008. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. Journal of Biotechnology 134(3-4): 261-265. https://doi.org/10.1016/j.jbiotec.2008.02.010
- Han NS, Kim TJ, Park YC, Kim JH, Seo JH. 2012. Biotechnological production of human milk oligosaccharides. Biotechnology Advances 30(6): 1268-1278. https://doi.org/10.1016/j.biotechadv.2011.11.003
- Jantscher-Krenn E, Lauwaet T, Bliss LA, Reed SL, Gillin FD, Bode L. 2012. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. British Journal of Nutrition 108(10): 1839-1846. https://doi.org/10.1017/S0007114511007392
- Koizumi S, Endo T, Tabata K, Nagano H, Ohnishi J, Ozaki A. 2000. Large-scale production of GDP-fucose and Lewis X by bacterial coupling. Journal of Industrial Microbiology and Biotechnology 25(4): 213-217. https://doi.org/10.1038/sj.jim.7000055
- Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C. 1992. Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339:261-264. https://doi.org/10.1016/0140-6736(92)91329-7
- Mattila P, Rabina J, Hortling S, Helin J, Renkonen R. 2000. Functional expression of Escherichia coli enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in Saccharomyces cerevisiae. Glycobiology 10, 1041. https://doi.org/10.1093/glycob/10.10.1041
- Newburg DS, Walker WA. 2007. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatric Research 61(1): 2. https://doi.org/10.1203/01.pdr.0000250274.68571.18
- Petschacher B, Nidetzky B. 2016. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. Journal of Biotechnology 235: 61-83. https://doi.org/10.1016/j.jbiotec.2016.03.052
- Prieto PA, Mukerji P, Kelder B, Erney R, Gonzalez D, Yun JS, Smith DF, Moremen KW, Nardelli C, Pierce M. 1995. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. Journal of Biological Chemistry 270, 29515-29519. https://doi.org/10.1074/jbc.270.49.29515
- Prieto PA. 2012. Profiles of human milk oligosaccharides and production of some human milk oligosaccharides in transgenic animals. Advances in Nutrition 3, 456S-464S. https://doi.org/10.3945/an.111.001529
- Sela D, Mills D. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends in Microbiology.
- Smilowitz JT, O'Sullivan A, Barile D, German JB, Lonnerdal B, Slupsky CM. 2013. The human milk metabolome reveals diverse oligosaccharide profiles. The Journal of Nutrition 143(11): 1709-1718. https://doi.org/10.3945/jn.113.178772
- https://www.futuremarketinsights.com/reports/human-milk-oligosaccharides-market.
- https://ourworldindata.org/world-population-growth.