DOI QR코드

DOI QR Code

왕벚나무 잎으로 제조된 바이오차의 Pb(II) 흡착특성

Adsorption of Pb(II) by Cherry (Prunus x yedoensis) Leaf-Derived Biochar

  • 이명은 (경남과학기술대학교 도시시스템공학과) ;
  • 황규택 (경남과학기술대학교 환경공학과) ;
  • 김선영 (경남과학기술대학교 환경공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과)
  • Lee, Myoung-Eun (Department of Urban System Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Hwang, Kyu-Taek (Department of Environmental Engineering, GNTECH) ;
  • Kim, Sun-Young (Department of Environmental Engineering, GNTECH) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, GNTECH)
  • 투고 : 2018.05.07
  • 심사 : 2018.05.29
  • 발행 : 2018.06.30

초록

매년 가로수로부터 많은 양의 낙엽이 발생하고 이는 적절하게 수거하여 처리해야 한다. 왕벚나무는 우리나라에서 일반적인 가로수이다. 왕벚나무 잎(CL)과 그것으로부터 제조된 바이오차(CB)의 Pb(II) 흡착특성에 관한 회분식 실험을 수행하였다. 바이오차는 $800^{\circ}C$에서 90분간 탄화시켜 제조하였다. 흡착특성을 규명하기 위해 동력학적 및 등온 흡착실험을 수행하였다. 탄화과정은 바이오차의 탄소함량과 pH 값을 증가시키고 수소와 산소함량을 감소시켰다. 또한, 잘 발달된 공극 구조가 바이오차의 표면에 관찰되었다. CL과 CB에 의한 Pb(II) 흡착은 2차 속도모델에 의해 적절하게 설명될 수 있는 것으로 나타나 흡착반응의 속도가 물리적 흡착보다는 화학적 흡착에 의해 결정됨을 알 수 있었다. CB는 CL에 비해 더 빠른 흡착반응과 높은 흡착용량을 가지는 것으로 나타났다. Pb(II)의 등온흡착 특성은 Langmuir 모델에 의해 보다 적절하게 설명될 수 있는 것으로 나타났다. Langmuir 상수, $Q^0$에 의해 설명되는 최대흡착용량은 CL이 37.31 mg/g, CB가 94.34 mg/g으로 나타났다.

Large amounts of leaves from street trees fall onto the streets annually and need to be cleaned and treated. Cherry trees are common street trees in Korea. The adsorption characteristics of Pb(II) by cherry leaf (CL) and cherry leaf-derived biochar (CB) were studied through a series of batch experiments. CB was produced through the carbonization of CL at $800^{\circ}C$ for 90 min. Carbonization increased the C content and pH value, while decreased H and O contents. Well developed pore structure was observed at the surface of CB. The pseudo-second order model better described the kinetics of Pb(II) adsorption onto CL and CB, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption. Fast adsorption rates and high adsorption capacities were obtained by the carbonization from CL to CB. Langmuir models better adequately described the Pb(II) adsorption onto CL and CB. Maximum adsorption capacities of Pb(II) expressed by Langmuir constant, $Q^0$ were 37.31 mg/g and 94.34 mg/g, when CL and CB were used as adsorbents, respectively.

키워드

참고문헌

  1. Demirbas, A., "Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues", Journal of Analytical and Applied Pyrolysis, 72(2), pp. 243-248. (2004). https://doi.org/10.1016/j.jaap.2004.07.003
  2. Song, W. and Guo, M., "Quality variations of poultry litter biochar generated at different pyrolysis temperatures", Journal of Analytical and Applied Pyrolysis, 94, pp. 138-145. (2012). https://doi.org/10.1016/j.jaap.2011.11.018
  3. Jeong, C. Y., Dodla, S. K. and Wang, J. J., "Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products", Chemosphere, 142, pp. 4-13. (2016). https://doi.org/10.1016/j.chemosphere.2015.05.084
  4. Sohi, S. P., Krull, E., Lopez-Capel, E. and Bol, R., "A review of biochar and its use and function in soil", Advances in Agronomy, Sparks, D. L., Ed., Academic Press, Burlington, MA, USA, pp. 47-82. (2010).
  5. Spokas, K. A., "Review of the stability of biochar in soils: Predictability of O:C molar ratio", Carbon Management, 1(2), pp. 289-303. (2010). https://doi.org/10.4155/cmt.10.32
  6. Ioannidou, O. and Zabaniotou, A., "Agricultural residues as precursors for activated carbon production-a review", Renewable and Sustainable Energy Reviews, 11(9), pp. 1966-2005. (2007). https://doi.org/10.1016/j.rser.2006.03.013
  7. Mui, E. L. K., Cheung, W. H., Valix M. and McKay G., Activated carbon from bamboo scaffolding using acid activation, Separation and Purification Technology, 74(2), pp. 213-218. (2010). https://doi.org/10.1016/j.seppur.2010.06.007
  8. Bak, Y.-C., Cho, K.-J. and Choi, J.-H., "Production and $CO_2$ adsorption characteristics of activated carbon from bamboo by $CO_2$ activation method", Korean Chemical Engineering Research, 43(1), pp. 146-152. (2005).
  9. Park, J. H., Lee, S.-J., Lee, M.-E. and Chung, J. W., "Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar", Environmental Science Process & Impacts, 18(4), pp. 514-520. (2016). https://doi.org/10.1039/C6EM00098C
  10. Tong, X. J., Li, J. Y., Yuan, J. H. and Xu, R. K., "Adsorption of Cu(II) by biochar from three crop straws", Chemical Engineering Journal, 172(2-3), pp. 828-834. (2011). https://doi.org/10.1016/j.cej.2011.06.069
  11. Lee, M.-E., Park, J. H., and Chung, J. W., "Adsorption of Pb(II) and Cu(II) by ginkgo-leaf- derived biochar produced under various carbonization temperatures and times", International Journal of Environmental Research and Public Health, 14, 1528. (2017). https://doi.org/10.3390/ijerph14121528
  12. Gollmann, M. A. C., da Silva, M. M., Masuero, A. B. and dos Santos, J. H. Z., "Stablization and solidification of Pb in cement matrices", Journal of Hazardous Materials, 179(1-3), pp. 507-514. (2010). https://doi.org/10.1016/j.jhazmat.2010.03.032
  13. ATSDR, Agency for Toxic Substances and Disease Registry, Toxicological Profile for Lead, Atlanta. (2007).
  14. Park, J. H., Bolan, N., Megharaj, M. and Naidu, R., "Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils", Science of The Total Environment, 409(4), pp. 853-860. (2011). https://doi.org/10.1016/j.scitotenv.2010.11.003
  15. Lee, S.-J., Park, J. H., Ahn, Y.-T. and Chung, J. W., "Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions", Water Air Soil Pollution, 226, p. 9. (2015). https://doi.org/10.1007/s11270-014-2275-4
  16. Lee, M.-E. and Chung, J. W., "Effects of acid modification on Pb(II) and Cu(II) adsorption of bamboo-based activated carbon", Journal of the Korea Organic Resource Recycling Association, 24(1), pp. 3-10. (2016). https://doi.org/10.17137/KORRAE.2016.24.1.3
  17. Ho, Y. S., "Review of second-order models for adsorption systems", Journal of Hazardous Materials, 136(3), pp. 681-689. (2006). https://doi.org/10.1016/j.jhazmat.2005.12.043
  18. Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., "Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products", Journal of Environmental Management, 96(1), pp. 35-42. (2012). https://doi.org/10.1016/j.jenvman.2011.10.010
  19. Beach, T., Luzzadder-Beach, S., Cook, D., Dunning, N., Kennett, D. J., Krause, S., Terry, R., Trein, D. and Valdez, F., "Ancient Maya impacts on the Earth's surface: An Early Anthropocene analog?", Quaternary Science Reviews, 124(15), pp. 1-30. (2015). https://doi.org/10.1016/j.quascirev.2015.05.028
  20. Ippolito, J. A., Spokas, K. A., Novak, J. M., Lentz, R. D. and Cantrell, K. B., "Biochar elemental composition and factors influencing nutrient retention", Lehmann, J., Joseph, S. (Ed.), Biochar for Environmental Management: Science, Technology and Implementation, Routledge New York, p. 139-163. (2015).
  21. Yuan, J. H., Xu, R. K. and Zhang, H., "The forms of alkalis in the biochar produced from crop residues at different temperatures", Bioresource Technology, 102(3), pp. 3488-3497. (2011). https://doi.org/10.1016/j.biortech.2010.11.018
  22. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M. Bolan, N., Mohan, D., Vithanage, M., Lee S. S. and Ok, Y. S., "Biochar as a sorbent for contaminant management in soil and water: A review", Chemosphere, 99, pp. 19-33. (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  23. Lee, M.-E., Park, J. H., Chung, J. W., Lee, C.-Y. and Kang, S., "Removal of Pb and Cu ions from aqueous solution by $Mn_3O_4$-coated activated carbon", Journal of Industrial and Engineering Chemistry, 21(25), pp. 470-475. (2015). https://doi.org/10.1016/j.jiec.2014.03.006
  24. Aksu, Z., "Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris", Process Biochemistry, 38(1), pp. 89-99. (2002). https://doi.org/10.1016/S0032-9592(02)00051-1
  25. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, 34(5), pp. 451-465. (1999). https://doi.org/10.1016/S0032-9592(98)00112-5