참고문헌
- Park, W. K., Park, N. B., Shin, J. D., Hong, S. G. & Kwon S. I., "Estimation of biomass resource conversion factor and potential production in agricultural sector", Korean Journal of Environmental Agriculture, 30(3), pp. 252-260. (2011). https://doi.org/10.5338/KJEA.2011.30.3.252
- Zhang, X., Kondragunta, S., Schmidt, C. & Kogan, F., "Near real time monitoring of biomass burning particulate emissions (PM2. 5) across contiguous United States using multiple satellite instruments", Atmospheric Environment, 42(29), pp. 6959-6972. (2008). https://doi.org/10.1016/j.atmosenv.2008.04.060
- Lehmann, J.. and Joseph, S., "Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology", Earthscan, London, pp. 1-12, (2009).
- Mathews, J. A., "Carbon-negative biofuels", Energy Policy, 36(3), pp. 940-945. (2008). https://doi.org/10.1016/j.enpol.2007.11.029
- Lehmann, J., "Biological carbon sequestration must and can be a win-win approach", Climate Change. 97(3), pp. 459-463. (2009). https://doi.org/10.1007/s10584-009-9695-y
- Singh, B. P., Cowie A. L. and Smernik, R. J., "Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature", Environmental Science and Technology, 46(21), pp. 11770-11778. (2012). https://doi.org/10.1021/es302545b
- Larid, D., Fleming, P., Wang, B. Q., Horton, R. and Karlen. D., "Biochar impact on nutrient leaching from a Midwestern agricultural soil", Geoderma, 158(3), pp. 436-442. (2010). https://doi.org/10.1016/j.geoderma.2010.05.012
-
Yanai, Y., Toyota, K. and Okazaki, M., "Effects of charcoal addition on
$N_2O$ emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments", Soil Science and Plant Nutrition, 53(2), pp. 181-188. (2007). https://doi.org/10.1111/j.1747-0765.2007.00123.x -
Cheng, Y., Cai, Z. C., Chang, S. X., Wang, J. and Zhang, J. B., "Wheat straw and its biochar have contrasting effects on inorganic N retention and
$N_2O$ production in a cultivated black chernozem", Biology and Fertility of Soils, 48(8), pp. 941-946. (2012). https://doi.org/10.1007/s00374-012-0687-0 - Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. and Kathuria, A., "Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils", Journal of Environmental Quality. 39(4), pp. 1224-1235. (2009). https://doi.org/10.2134/jeq2009.0138
- Lee, S. I., Lee J. S., Kim G. Y., Choi, E. J., Suh S. U. and Na U. S., "Effect of carbonized biomass derived from pruning on soil carbon pools in pear orchard", Korean Journal of Environmental Agriculture, 35(3), pp. 159-165. (2016). https://doi.org/10.5338/KJEA.2016.35.3.26
- Lee, S. I., Kim G. Y., Choi, E. J., Lee J. S. & Jung H. C., "Decreases nitrous oxide emission and increase soil carbon via carbonized biomass application of orchard soil", Korean Journal of Environmental Agriculture, 36(2), pp. 73-79. (2017). https://doi.org/10.5338/KJEA.2017.36.2.13
- Gee, G. W. and Bauder, J. W., "Particle size analysis. Physical and mineralogical methods", American Society of Agronomy and Soil Science Society of America, pp. 383-412. (1986).
- NIAS., "Methods of soil and plant analysis:, National Institute of Agricultural Sciences, RDA, (2000).
- Zeng, W., Xu, C., Wu, J., Huang, J. and Ma, T., "Effect of salinity on soil respiration and nitrogen dynamics", Ecological Chemistry and Engineering S., 20(3), pp. 519-530. (2013). https://doi.org/10.2478/eces-2013-0039
- Nichols G. J., Cripps, J. A., Collinson, M. E. and Scott. A. D., "Experiments in waterlogging and sedimentology of charcoal: Results and implications", Paleogeography, Paleoclimatology, Paleoecology, 164(1), pp. 43-56. (2000). https://doi.org/10.1016/S0031-0182(00)00174-7
- Ascough, P. L., Sturrock, C. J. and Bird, M. I., "Investigation of growth responses in saprophytic fungi to charred biomass", Isotopes in Environmental and Health Studies, 46(1), pp. 64-77. (2010). https://doi.org/10.1080/10256010903388436
- International Biochar Initiative (IBI), "Standard test method for estimating biochar carbon stability", (2013).
- Khalil, M. I., Hossain, M. B. and Schmidhalter, U., "Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials", Soil Biology and Biochemistry, 37(8), pp. 1507-1518. (2005). https://doi.org/10.1016/j.soilbio.2005.01.014
- Dalal, R. C., Wang, W., Robertson, G. P. and Parton, W. J., "Nitrous oxide emission from Australian agricultural lands and mitigation options: a review", Soil Res. 41, pp. 165-195. (2003). https://doi.org/10.1071/SR02064
- Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A. and Sanchez-Monedero, M. A., "Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture", Ecosystems & Environment, 191, pp. 5-16. (2014). https://doi.org/10.1016/j.agee.2013.10.009
- Wang, N., Chang, Z., Xue, X., Yu, J., Shi, X., Ma, L. and Li, H., "Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil", Science of The Total Environment, 581, pp. 689-696, (2017).
피인용 문헌
- 밭토양에서 저회의 풍화가 온실가스 배출 저감에 미치는 영향 vol.38, pp.4, 2019, https://doi.org/10.5338/kjea.2019.38.4.33
- 옥수수 재배지 아산화질소 배출에 대한 질소비료와 바이오차 시용 효과 vol.39, pp.4, 2018, https://doi.org/10.5338/kjea.2020.39.4.35