DOI QR코드

DOI QR Code

4분의 1 파장 초크 구조를 이용한 동축형 대역억제필터

A Coaxial Band Rejection Filter using a Quarter Wavelength Choke Structure

  • Han, Dae Hyun (Department of Electronic Engineering, Dongeui University)
  • 투고 : 2018.05.08
  • 심사 : 2018.06.26
  • 발행 : 2018.06.30

초록

전자빔과 상호작용하는 공동공진기를 위한 동축형 대역억제필터를 설계하고 제작하였다. 제안한 필터는 공동공진기의 기본모드에 대해 4분의 1 파장 길이의 초크를 가진다. 동축형 대역억제필터의 등가회로를 제시하고 각 부분의 ABCD 파라미터를 구하여 필터 전체의 ABCD 행렬을 구했다. ABCD 행렬로부터 산란행렬을 구하여 MATLAB으로 필터를 시뮬레이션하였다. 동축형 대역억제필터 구조를 HFSS를 이용하여 시뮬레이션을 수행하여 등가회로로 시뮬레이션이 유용함을 확인하였다. 설계한 동축형 대역억제필터는 6-1/8 플랜지를 가지는 필터를 제작하였다. 제작한 필터는 6-1/8 플랜지에서 N 형 플랜지로 변환하는 변환기를 사용하여 측정하였다. 제작된 필터의 삽입손실은 공동공진기의 기본모드에서 25 dB 이상이고 1차 고차모드에서 0.25 dB 보다 작다. 측정측정 결과는 시뮬레이션한 결과와 잘 일치하며 설계 규격을 만족한다.

A coaxial band rejection filter is designed and fabricated for a beam interacting cavity. The proposed filter has a quarter wavelength choke for the dominant mode of the cavity. The equivalent circuit of the coaxial band rejection filter is presented and the ABCD parameter os each part is derived to obtain the ABCD parameter of the entire filter. The scattering matrix was obtained from the ABCD matrix and the was simulated by MATLAB using the obtained scattering matrix. The coaxial band rejection filter structure was simulated using HFSS, and the results confirmed the simulation using the equivalent circuit was useful. The designed coaxial band rejection filter was fabricated with 6-1/8 flange. The fabricated filter was measured using a transition from 6-1/8 flange to N-type flange. The insertion loss of the fabricated filter is greater than 25 dB in the dominant mode of the cavity and less than 0.25 dB in the first higher order mode. The measurement results are in good agreement with the simulated results and meet the design specification.

키워드

참고문헌

  1. K. Umemori; M. Izawa; K. Saito; S. Sakanaka, "Higher-Order-Mode Damping of L-Band Superconducting Cavity Using A Radial-Line HOM Damper", Proceedings of the 2005 Particle Accelerator Conference, pp. 3606-3608, 2005.
  2. Ralph Levy, Tullio E. Rozzi, "Precise Design of Coaxial Low-Pass Filters", IEEE Trans. Microwave Theory and Techn., vol. MTT-16, no. 3, pp 142-147, March 1968.
  3. W. Alan Davis, Peter J. Khan, "Coaxial Bandpass Filter Design", IEEE Trans. Microwave Theory and Techn., vol. MTT-19, no. 4, pp 373-380, April 1971.
  4. E. Doumanis, S. Bulja, D. Kozlov, "Compact Coaxial Filters for BTS Applications", IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1077 - 1079, Dec. 2017 https://doi.org/10.1109/LMWC.2017.2757446
  5. F. Chen, J. Qiu, S. Wong, Q. Chu, "Dual-Band Coaxial Cavity Bandpass Filter With Helical Feeding Structure and Mixed Coupling", IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 31-33, Jan. 2015 https://doi.org/10.1109/LMWC.2014.2369965
  6. Q. Lu, W. Qin, J. Chen, "A Novel Balanced Bandpass Filter Based on Twin-Coaxial Resonator", IEEE Microwave and Wireless Components Letters, vol. 27, no. 2, pp. 114-116, Feb. 2017 https://doi.org/10.1109/LMWC.2016.2646906
  7. G. Matthaei, Microwave filters, impedance matching networks, and coupling structures, Artech House, 1980.
  8. Peter A. Rizzi, Microwave Engineering Passive Circuits, Prentice Hall, 1988.
  9. J. M. Osepchuk, J. E. Simpson, and R. A. Foerstner, "Advances in Choke Design for Microwave Oven Door Seal", Journal of Microwave Power, vol 8, no 3/4, 1773.
  10. David M. Pozar, Microwave Engineering, John Wiley & Sons Inc.