초록
본 논문에서 주 블레이드를 V 형태로 설계하고 주 블레이드 각도와 풍속을 변화시켜 최상의 설계조건을 확인하고자 하였다. 주 블레이드 open angle을 $120^{\circ}$유지하고, 각도를 $30^{\circ}$로 변화시킨 sample2와 $60^{\circ}$로 변화시킨 sample3를 비교 하였을 때, sample2는 출력이 3.8[kW], 효율은 0.12로 측정되었고 sample3은 출력이 6.0[kW] 효율은 0.18로 측정되었다. 즉 sample3은 sample2보다 출력이 58%, 효율이 50% 상승되었다. 그리고 주 블레이드 open angle $120^{\circ}$, 각도를 $60^{\circ}$로 고정하여 풍속을 7[m/s]일 때 출력이 6.0[kW]으로 효율은 0.18로 측정되었고, 풍속을 10[m/s]로 변화 주었을 때 출력은 7.7[kW], 효율은 0.23으로 측정되었다. 즉 풍속이 높았을 때 출력은 28%, 효율은 83%가 상승되었다. 또한 sample4는 sample2보다 출력에서 103%, 효율에서 92%가 더 상승하였다.
This paper designed the main blade in V-shape and tried to identify the best design conditions by changing the main blade angle and wind speed. When the main blade open angle was maintained at $120^{\circ}$ and the sample2 with an angle changed by $30^{\circ}$ was compared with the sample3 changed by $60^{\circ}$, the power output of sample2 was 3.8[kW], the power coefficient was 0.12, and the power output of sample3 was 6.0[kW], the power coefficient was measured as 0.18. So the power output of sample 3 was 58% higher than that of sample2, and the power coefficient was increased by 50%. The power coefficient was 0.18 and the wind speed was changed to 10[m/s] at 6.0[kW] at wind speed of 7[m/s] by fixing main blade open angle of $120^{\circ}$ and angle of $60^{\circ}$. The output was measured at 7.7[kW] and the power coefficient at 0.23. When the wind speed was high, the power output increased by 28% and the power coefficient increased by 83%. Also, sample4 was 103% higher in output and 92% more in efficiency than sample2.