초록
Using network betweenness centrality we attempt to analyze the characteristics of Seoul metropolitan subway lines. Betweenness centrality highlights the importance of a node as a transfer point between any pairs of nodes. This 'transfer' characteristic is obviously of paramount importance in transit systems. For betweenness centrality, both traditional betweenness centrality measure and weighted betweenness centrality measure which uses monthly passenger flow amount between two stations are used. By comparing traditional and weighted betweenness centrality measures of lines characteristics of passenger flow can be identified. We also investigated factors which affect betweenness centrality. It is the number of passenger who get on or get off that significantly affects betweenness centrality measures. Through correlation analysis of the number of passenger and betweenness centrality, it is found out that Seoul metropolitan subway system is well designed in terms of regional distribution of population. Four measures are proposed which represent the passenger flow characteristics. It is shown they do not follow Power-law distribution, which means passenger flow is relatively evenly distributed among stations. It has been shown that the passenger flow characteristics of subway networks in other foreign cities such as Beijing, Boston and San Franciso do follow power-law distribution, that is, pretty much biased passenger flow traffic characteristics. In this study we have also tried to answer why passenger traffic flow of Seoul metropolitan subway network is more homogeneous compared to that of Beijing.