참고문헌
- Cambridge University Press. (2008). Cambridge online dictionary, Cambridge Dictionary online. http://www.temoa.info/node/324
- Case, K. & Fair, R. (2007). Principles of Economics. Upper Saddle River, NJ: Pearson Education. 54.
- A. Lazar. (2004). Income prediction via support vector machine. 2004 International Conference on Machine Learning and Applications, Proceedings, 143-149.
- Conneau, A., Schwenk, H., Barrault, L. & Lecun, Y. (2017). Very Deep Convolutional Networks for Text Classification. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. 1. Long Papers. DOI:10.18653/v1/e17-1104
- A. Kibekbaev & E. Duman. (2015). Benchmarking Regression Algorithms for Income Prediction Modeling. 2015 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, 180-185. DOI: 10.1109/CSCI.2015.162
- K. Chen, L. Tian, H. Ding. M. Cai, L. Sun, S. Liang & Q. Huo (2017). A Compact CNN-DBLSTM Based Character Model for Online Handwritten Chinese Text Recognition, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 1068-1073.
- Bjelland, J., Reme B.A., Iqbal A. & Jahani, E. (2016), Deep learning applied to mobile phone data for Individual income classification. International conference on Artificial Intelligence: Technologies and Applications (ICAITA), Atlantic Press, 96-99.
- The Data Science Blog. (2018), An Intuitive Explanation of Convolutional Neural Networks. https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- DL4J (2018). A Beginner's Guide to Deep Convolutional Neural Networks (CNNs) - Deeplearning4j: Open-source, Distributed Deep Learning for the JVM. https://deeplearning4j.org/convolutionalnetwork
- Besbes, A. (2018). Understanding Deep Convolutional Neural Networks with a practical use-case in Tensorflow and Keras. https://www.kdnuggets.com/2017/11/understanding-dee p-convolutional-neural-networks-tensorflow-keras.html
- Namatevs, I. (2017). Deep Convolutional Neural Networks: Structure, Feature Extraction and Training. Information Technology and Management Science, 20(1), 40-47 .
- B. E. Boser, I. M. Guyon, and V. N. Vapnik.(1992), A training algorithm for optimal margin classifiers, COLT '92 Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, PA, ACM Press, 144-152.
- K. Nurhanim, I. Elamvazuthi, L. I. Izhar and T. Ganesan. (2017). Classification of human activity based on smartphone inertial sensor using support vector machine, 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation (ROMA), Kuala Lumpur, Malaysia, 1-5.
- Dataaspirant. (2017). How the Naive Bayes Classifier works in Machine Learning. http://dataaspirant.com/2017/02/06/naive-bayes-classifier-machine-learning/
- Analytics Vidhya Content Team. (2016). A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python). https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/
- Albelwi, S. and Mahmood, A. (2017). A Framework for Designing the Architectures of Deep Convolutional Neural Networks. Entropy, 19(6), 242. https://doi.org/10.3390/e19060242
- G. D. Kim, Y. H. Kim.(2017). A Survey on Oil Spill and Weather Forecast Using Machine Learning Based on Neural Networks and Statistical Methods, Journal of the Korea Convergence Society, 8(10), 1-8. https://doi.org/10.15207/JKCS.2017.8.10.001
- C. J. Lee,. G. D. Kim, Y. H. Kim, (2017). Performance Comparison of Machine Learning Based on Neural Networks and Statistical Methods for Prediction of Drifter Movement, .Journal of the Korea Convergence Society. 8(10), 45-52. https://doi.org/10.15207/JKCS.2017.8.10.045
- H. J. Yoon. (2017). Classification for early diagnosis for breast cancer base on Neural Network, Journal of the Korea Convergence Society, 8(12), 49-53. https://doi.org/10.15207/JKCS.2017.8.12.049
- K. T. Kim, J. Y. Choi. (2018). Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition, Journal of the Korea Convergence Society, 9(4), 47-55. https://doi.org/10.15207/JKCS.2018.9.4.047