References
- K. I. Beidar, M. Bresar, M. A. Chebotar and W. A. Martindale 3rd , On Her-steins Lie map conjectures II, J. Algebra 238 (1) (2001), 239-264. https://doi.org/10.1006/jabr.2000.8628
- M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1
- M. Bresar, Jordan mappings of semiprime rings, J. Algebra. 127 (1989), 218-228. https://doi.org/10.1016/0021-8693(89)90285-8
- M. Bresar, P. Semrl, Commutativity preserving linear maps on central simple algebras, Journal of algebra 284 (2005) 102-110. https://doi.org/10.1016/j.jalgebra.2004.09.014
- J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. https://doi.org/10.1090/S0002-9939-1975-0399182-5
- A. B. A. Essaleha, A. M.Peralta, Linear maps on C*-algebras which are derivations or triple derivations at a point, Linear Algebra and its Applications 538 (2018).
- B. E. Johnson , Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc. 120 (1996), 455-473. https://doi.org/10.1017/S0305004100075010
- U.Haagerup and N. Laustsen, , Weak amenability of C*-algebras and a theorem of Goldstein, Banach algebras 97 (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
- I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1119. https://doi.org/10.1090/S0002-9939-1957-0095864-2
- Shoichiro sakai, Operator algebras in dynamical systems, Volume 41, Cambrige University press, 2008.
- Vukman , Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322. https://doi.org/10.1017/S0004972700026927