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IRREDUCIBILITY OF GALOIS POLYNOMIALS

Gicheol Shin, Jae Yun Bae, and Ki-Suk Lee*

Abstract. We associate a positive integer n and a subgroup H
of the group (Z/nZ)× with a polynomial Jn,H(x), which is called
the Galois polynomial. It turns out that Jn,H(x) is a polynomial
with integer coefficients for any n and H. In this paper, we provide
an equivalent condition for a subgroup H to provide the Galois
polynomial which is irreducible over Q in the case of n = pe11 · · · perr
(prime decomposition) with all ei ≥ 2.

For a positive integer n, we denote the nth primitive root e2πi/n of
unity by ζn, and the (multiplicative) group consisting of all invertible
elements in the ring Z/nZ by (Z/nZ)× throughout this paper. Also,
φ(n) denotes the Euler’s phi function, i.e., φ(n) = |(Z/nZ)×|.

1. Introduction

Let n be a positive integer. It is well known that the nth cyclotomic
polynomial

Φn(x) =
∏

i∈(Z/nZ)×
(x− ζin)

is a polynomial of degree φ(n) with integer coefficients, and that it is
irreducible over Q, the field of rational numbers.

Let H be a subgroup of the group (Z/nZ)×. In paper [1], Kwon,
Lee, and the third author first introduced the Galois polynomial Jn,H(x)
associated with n and H as a generalization of the cyclotomic polynomial
Φn(x), and provided several properties of Jn,H(x): as the cyclotomic
polynomial Φn(x) is, the Galois polynomial Jn,H(x) is a polynomial
with integer coefficients. In addition, if n is square-free, then Jn,H is
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irreducible over Q for any subgroup H. We will give a brief review of
definition of Galois polynomials and their properties in the next section.

However, if n is divisible by p2 for some prime number p, some sub-
group H fails to produce the Galois polynomial which is irreducible over
Q. The question then arises: for such an integer n, what are (sufficient,
necessary, or both) conditions for a subgroup H to produce the irre-
ducible Galois polynomial over Q? In the last section, we will provide an
answer to this question when n has prime decomposition n = pe11 · · · perr
with ei ≥ 2 (1 ≤ i ≤ r), where p1, · · · , pr are distinct prime numbers.
Also, we will briefly discuss some possible directions for future research.

2. A review of Galois Polynomials

In this section, we briefly review Galois polynomials and their basic
properties.

2.1. Definition of Jn,H(x)

Let n be a positive integer. It is well known that the Galois group
Gal(Q(ζn)/Q) of the field extension Q(ζn) over Q is isomorphic to the
group (Z/nZ)× via the isomorphism θ : (Z/nZ)× → Gal(Q(ζn)/Q), θ(g)
= θg, which is given by θg(ζn) = ζgn.

Definition 2.1. Let n be a positive integer, and let H be a subgroup
of G = (Z/nZ)×. The Galois polynomial Jn,H(x) associated with n and
H is the polynomial defined as

Jn,H(x) =
∏

K∈G/H

(x− αK),

where αK =
∑

k∈K θk(ζn) =
∑

k∈K ζ
k
n. In other words, if {g1, · · · , gm}

is a system of representatives of cosets of G by H, then

Jn,H(x) =

(
x−

∑
h∈H

ζg1hn

)
· · ·

(
x−

∑
h∈H

ζgmhn

)
.

Remark 2.2. From the definition, we can directly see that the Galois
polynomial associated with n and the trivial subgroup {1} is nothing
but the nth cyclotomic polynomial Φn(x). Also, the Galois polynomial
associated with the subgroup {1, n− 1} was studied in [2].
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Example 2.3. Consider the case of n = 16. There are exactly eight
subgroups of (Z/16Z)×:

H1 = {1, 9},
H2 = {1, 3, 9, 11},
H3 = {1, 5, 9, 13},
H4 = {1, 7, 9, 15},
H5 = {1, 3, 5, 7, 9, 11, 13, 15},
K1 = {1},
K2 = {1, 7},
K3 = {1, 15}.

For each subgroup, the associated Galois polynomials is given as follows:

J16,H1(x) = x4,

J16,H2(x) = x2,

J16,H3(x) = x2,

J16,H4(x) = x2,

J16,H5(x) = x,

J16,K1(x) = x8 + 1 = Φ16(x),

J16,K2(x) = x4 + 4x2 + 2,

J16,K3(x) = x4 − 4x2 + 2.

2.2. An action of G/H on the set {αK | K ∈ G/H}

Let n be a positive integer and G = (Z/nZ)×. Via the map θ : G→
Gal(Q(ζn)/Q), the group G acts on the set {αK | K ∈ G/H} as follows:

g · αK = θg(αK) = θg

(∑
k∈K

ζkn

)
=
∑
k∈K

ζgkn = αgK .

Since H is a subgroup of G, and since G is abelian, it can be easily seen
that H acts on {αK | K ∈ G/H} trivially, from which it follows that
the action of G induces the action of G/H on the set {αK | K ∈ G/H}.
Moreover, the action of G on {αK | K ∈ G/H} is transitive. In fact,
for any K ∈ G/H, if k ∈ K then we have k · αH = αkH = αK . Thus,
G/H also acts on {αK | K ∈ G/H} transitively; that is, the orbit of αH
under the action of G/H is equal to {αK | K ∈ G/H}.
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2.3. Basic properties

Notice that the extension Q(ζn) of Q is a Galois extension. It follows
that the minimal polynomial irr(αH ,Q) of αH over Q is

(1) irr(αH ,Q)(x) =
∏

αK∈OrbG(αH)

(x− αK),

where OrbG(αH) is the orbit of αH , i.e., OrbG(αH) = {αK | K ∈ G/H}.
Hence, the Galois polynomial Jn,H(x) is a power of irr(αH ,Q)(x); more
precisely, we have

(2) Jn,H(x) = (irr(αH ,Q)(x))` ,

where ` = |StabG/H(αH)| = |G/H|/|OrbG(αH)|.
Hence, we obtain the following lemma:

Lemma 2.4. Let n be a positive integer, and let H be a subgroup
of G = (Z/nZ)×. Then the following statements are true.

1. All coefficients of Jn,H(x) are rational, i.e., Jn,H(x) ∈ Q[x].

2. StabG/H(αH) = G/H if and only if Jn,H(x) is of the form x`.
3. StabG/H = {1} if and only if Jn,H(x) is irreducible over Q.

Remark 2.5. In fact, for any n and H, the Galois polynomial
Jn,H(x) is a monic polynomial with integer coefficients. Moreover, for a
proper subgroup H, StabG/H(αH) = G/H if and only if αH = 0. See
[1] for a proof and details. Also, in [1], it was proven that if n is square-
free, then the Galois polynomial Jn,H(x) associated with any subgroup
is irreducible over Q.

3. Galois Polynomials for n = pe11 · · · perr with ei ≥ 2 (1 ≤ i ≤ r)

Throughout this section, we assume that n is a fixed positive integer
with prime decomposition n = pe11 · · · perr , where p1, · · · , pr are distinct
prime numbers and each ei (1 ≤ i ≤ r) is greater than 1. Under this as-
sumption, we will characterize subgroups H for which Jn,H is irreducible
over Q.

Let n = p1 · · · pr denote the radical of n and d = n/n.

3.1. The subgroup C of (Z/nZ)×

Since gcd(1 + `d, n) = 1 for any ` ∈ Z, we may regard 1 + `d as an
element of the group (Z/nZ)×. Consider the subset C = {1+`d | ` ∈ Z}
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of (Z/nZ)×. Observe that ei ≥ 2 (1 ≤ i ≤ r) implies

(3) d2 ≡ p2(e1−1)1 · · · p2(er−1)r ≡ npe1−21 · · · per−2r ≡ 0 (mod n),

hence, dk ≡ 0 mod n for all k ≥ 2. Thus, we obtain

(4) (1 + d)` ≡ 1 + `d (mod n) (` ∈ Z),

from which it follows that the subset C is the cyclic subgroup of H
generated by the element 1 + d.

3.2. The sum αH =
∑

h∈H ζ
h
n

We first provide a criterion for a subset H of (Z/nZ)× to satisfy∑
h∈H ζ

h
n = 0, which plays an important role in proving our main theo-

rem (Theorem 3.7).

Lemma 3.1. Let H be a subgroup of (Z/nZ)× with H ∩ C 6= {1}.
Then we have

∑
h∈H ζ

h
n = 0.

Proof. Since C is a cyclic group, K = H ∩C is also cyclic. Let 1 + `d
be a generator of K. Then by assumption, we have 1 + `d 6≡ 1 (mod n).

Thus if m is the order of the element 1 + `d, then∑
k∈K

ζkn =
m−1∑
i=0

ζ1+i`dn = ζn

m−1∑
i=0

ζi`dn

= ζn
1− ζm`dn

1− ζ`dn
= 0.

Now pick a system {h1, · · · , hs} of representatives of cosets of H by
K. Then we have∑

h∈H
ζhn =

s∑
j=1

θhj

(∑
k∈K

ζkn

)
=

s∑
j=1

θhj (0) = 0,

as desired.

Example 3.2. Consider the case of n = 16 = 24, n = 2, and d =
8. In this case, we have C = {1, 9}. Only subgroups containing 9 of
(Z/16Z)× are

H1 = {1, 9} = C,

H2 = {1, 3, 9, 11},
H3 = {1, 5, 9, 13},
H4 = {1, 7, 9, 15}, and

H5 = {1, 3, 5, 7, 9, 11, 13, 15} = (Z/16Z)×.
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Figure 1. the sum αHi =
∑

h∈Hi
ζh16 for each i = 1, 2, 3, 4, 5

For this small example, figure 1 shows that for each subgroup Hi(1 ≤
i ≤ 5), the sum

∑
h∈Hi

ζh16 equals zero by symmetry.

On the other hand, (Z/16Z)× has exactly three subgroups not con-
taining 9:

K1 = {1}, K2 = {1, 7}, and K3 = {1, 15},

and obviously, we have

ζ16 6= 0, ζ16 + ζ716 6= 0, and ζ16 + ζ1516 6= 0 (See figure 2).

Example 3.3. Let n = 9 = 32, n = 3, and d = 3. In this case,
we have C = {1, 4, 7}. Notice that C is a cyclic group of order 3, from
which it follows that if H ∩ C 6= {1}, then H ∩ C = C; in other words,
if H contains either 4 or 7, then H contains both 4 and 7. There are
exactly two subgroups containing 4 and 7:

H1 = {1, 4, 7}, H2 = {1, 2, 4, 5, 7, 8} = (Z/9Z)×.
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Figure 2. the sum αKi =
∑

h∈Ki
ζh16 for each i = 1, 2, 3
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Figure 3. The sum αHi =
∑

h∈Hi
ζh9 for each i = 1, 2, 3, 4, 5

Figure 3 shows ∑
h∈H1

ζh9 = ζ9 + ζ49 + ζ79 = 0, and

∑
h∈H2

ζh9 = ζ9 + ζ29 + ζ49 + ζ59 + ζ79 + ζ89 = 0

by symmetry.
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h ζh16 h ζh16
1 ζ16 9 −ζ16
3 ζ316 11 − ζ316
5 ζ516 13 − ζ516
7 ζ716 15 − ζ716
Table 1. expressions of ζh16 for h ∈ (Z/16Z)×

3.3. An expression of ζhn ∈ Q(ζn) (h ∈ (Z/nZ)×)

In fact, the converse of the Lemma 3.1 is true. Before proving this,
it is worthwhile to express ζhn for h ∈ G = (Z/nZ)× as a Q-linear com-

bination of 1, ζn, · · · , ζφ(n)−1n . First notice that every h ∈ G = (Z/nZ)×

can be uniquely expressed as h = m + `d, where m ∈ {0, 1, · · · , d − 1}
and ` ∈ {0, 1, · · · , n− 1}. Thus, we obtain ζhn = ζm+`d

n = ζmn ζ
`d
n = ζmn ζ

`
n.

On the other hand, since ζ`n ∈ Q(ζn), we can rewrite ζ`n as

ζ`n = a0 + a1ζn + · · ·+ aφ(n)−1ζ
φ(n)−1
n (a0, a1, · · · , aφ(n)−1 ∈ Q).

Hence, we can express ζhn as follows:

ζhn = ζmn

(
a0 + a1ζn + · · ·+ aφ(n)−1ζ

φ(n)−1
n

)
= ζmn

(
a0 + a1ζ

d
n + · · ·+ aφ(n)−1ζ

(φ(n)−1)d
n

)
= a0ζ

m
n + a1ζ

m+d
n + · · ·+ aφ(n)−1ζ

m+(φ(n)−1)d
n .

Since

m+ (φ(n)− 1)d < d+ (φ(n)− 1)d

= φ(n)d = (p1 − 1)pe1−11 · · · (pr − 1)per−1r = φ(n),

only ζm+id
n terms (i = 0, 1, · · · , φ(n)− 1) possibly appear in the expres-

sion of ζhn as a linear combination of 1, ζn, · · · , ζφ(n)−1n .

Example 3.4. Let n = 16 = 24, n = 2, and d = 8. Using the
fact Φ16(x) = x8 + 1 (hence, ζ816 = −1), we can easily verify Table 1,
which shows an expression of each primitive root ζh16 of unity as a linear
combination.

Example 3.5. Let n = 9 = 32, n = 3, and d = 3. In this case, we
have Φ9(x) = x6 +x3 + 1. Table 2 shows an expression of each primitive
root ζh9 of unity as a linear combination.
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h ζh9 h ζh9 h ζh9
1 ζ9 4 ζ49 7 −ζ9 − ζ49
2 ζ29 5 ζ59 8 − ζ29 − ζ59

Table 2. expressions of ζh9 for h ∈ (Z/9Z)×

Theorem 3.6. LetH be a subgroup ofG = (Z/nZ)×. Then
∑

h∈H ζ
h
n =

0 if and only if H contains an element 6= 1 of the form 1 + `d.

Proof. In lemma 3.1, we showed “if” direction, so we prove “only
if” direction here. Suppose that H has no element of the form 1 +
`d except for the identity 1. As we have seen, for any h ∈ H \ {1},
ζn term never appear in the expression of ζhn as a linear combination

of 1, ζn, · · · , ζφ(n)−1n . Since 1 ∈ H, apparently, ζn appears in the sum∑
h∈H ζ

h
n , i.e.,∑

h∈H
ζhn = ζn + (a linear combination of the others 1, ζ2n, · · · , ζφ(n)−1n ),

from which it follows that the sum
∑

h∈H ζ
h
n never equals zero.

3.4. Main result

Now we are ready to prove our main result on irreducibility of Galois
polynomials.

Theorem 3.7. Let H be a subgroup of G = (Z/nZ)× which has
no element of the form 1 + `d except for the identity 1, i.e., H ∩ C =
{1}. Then the Galois polynomial Jn,H(x) associated with n and H is
irreducible over Q.

Proof. Thanks to lemma 2.4, it suffices to show that for any k ∈ G\H,
two sums

∑
h∈H ζ

h
n and

∑
h∈H ζ

kh
n are different. Assume to the contrary

that for some k ∈ G \H, we have
∑

h∈H ζ
h
n =

∑
h∈H ζ

kh
n . In the proof

of theorem 3.6, we have seen

(5)

(∑
h∈H

ζhn

)
− ζn = (a linear combination of 1, ζ2n, · · · , ζφ(n)−1n ),

which implies that the coset kH should contain at least one element of
the form 1 + `d. Let x = 1 + `d denote such an element of kH. On the
other hand, since H and kH are disjoint and 1 ∈ H, we have x 6= 1,
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which implies ζxn 6= ζn. Thus, ζxn should be either a scalar multiple of ζn
which is not equal to ζn or of the form

ζn +
(

nonzero linear combination of ζ1+dn , · · · , ζ1+(φ(n)−1)d
n

)
.

Since the terms ζ1+idn (i = 1, · · · , φ(n)−1) never appear in the expression
5, we can conclude that kH also contain another element y = 1 + `′d
with x 6= y in both case. It follows that the element 1 + (` − `′)d =
(1 + `d)(1− `′d) = xy−1( 6= 1) belongs to H, which is absurd.

From lemma 2.4 and the theorem above, we directly see:

Corollary 3.8. For any subgroup H of G = (Z/nZ)×, the stabilizer

StabG/H(aH) = StabG/H

(∑
h∈H

ζhn

)
is either {1} or G/H. Hence, the Galois polynomial is either irreducible

over Q or equal to x|G/H|.

3.5. Future research

First of all, we are still interested in characterizing subgroups which
produce irreducible Galois polynomials for general n to find a complete
answer to the question which was mentioned in the introduction.

Second, since all coefficients of Galois polynomials are integers, we
would like to study those mysterious coefficients in a combinatorial way.
For example, motivated by the fact

Φn(1) =

{
p if n = pk,

1 if n is divisible by two or more distinct prime numbers,

possible questions are what the integer Jn,H(1) is and how it can be
related with n and H.
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