Honam Mathematical J. **40** (2018), No. 2, pp. 281–291 https://dx.doi.org/10.5831/HMJ.2018.40.2.281

IRREDUCIBILITY OF GALOIS POLYNOMIALS

GICHEOL SHIN, JAE YUN BAE, AND KI-SUK LEE*

Abstract. We associate a positive integer n and a subgroup H of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ with a polynomial $J_{n,H}(x)$, which is called the Galois polynomial. It turns out that $J_{n,H}(x)$ is a polynomial with integer coefficients for any n and H. In this paper, we provide an equivalent condition for a subgroup H to provide the Galois polynomial which is irreducible over \mathbb{Q} in the case of $n = p_1^{e_1} \cdots p_r^{e_r}$ (prime decomposition) with all $e_i \geq 2$.

For a positive integer n, we denote the n^{th} primitive root $e^{2\pi i/n}$ of unity by ζ_n , and the (multiplicative) group consisting of all invertible elements in the ring $\mathbb{Z}/n\mathbb{Z}$ by $(\mathbb{Z}/n\mathbb{Z})^{\times}$ throughout this paper. Also, $\phi(n)$ denotes the Euler's phi function, *i.e.*, $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$.

1. Introduction

Let n be a positive integer. It is well known that the n^{th} cyclotomic polynomial

$$\Phi_n(x) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (x - \zeta_n^i)$$

is a polynomial of degree $\phi(n)$ with integer coefficients, and that it is irreducible over \mathbb{Q} , the field of rational numbers.

Let H be a subgroup of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. In paper [1], Kwon, Lee, and the third author first introduced the Galois polynomial $J_{n,H}(x)$ associated with n and H as a generalization of the cyclotomic polynomial $\Phi_n(x)$, and provided several properties of $J_{n,H}(x)$: as the cyclotomic polynomial $\Phi_n(x)$ is, the Galois polynomial $J_{n,H}(x)$ is a polynomial with integer coefficients. In addition, if n is square-free, then $J_{n,H}$ is

Received January 11, 2018. Revised March 3, 2018. Accepted March 14, 2018.

²⁰¹⁰ Mathematics Subject Classification. 12D05, 12E05, 12F05, 12F10.

Key words and phrases. $n\mbox{-th}$ cyclotomic polynomial, Galois irreducible polynomial, semi-cyclotomic polynomial

^{*}corresponding author

irreducible over \mathbb{Q} for any subgroup H. We will give a brief review of definition of Galois polynomials and their properties in the next section.

However, if n is divisible by p^2 for some prime number p, some subgroup H fails to produce the Galois polynomial which is irreducible over \mathbb{Q} . The question then arises: for such an integer n, what are (sufficient, necessary, or both) conditions for a subgroup H to produce the irreducible Galois polynomial over \mathbb{Q} ? In the last section, we will provide an answer to this question when n has prime decomposition $n = p_1^{e_1} \cdots p_r^{e_r}$ with $e_i \geq 2$ $(1 \leq i \leq r)$, where p_1, \cdots, p_r are distinct prime numbers. Also, we will briefly discuss some possible directions for future research.

2. A review of Galois Polynomials

In this section, we briefly review Galois polynomials and their basic properties.

2.1. Definition of $J_{n,H}(x)$

Let *n* be a positive integer. It is well known that the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ of the field extension $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is isomorphic to the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ via the isomorphism $\theta \colon (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}), \theta(g) = \theta_q$, which is given by $\theta_q(\zeta_n) = \zeta_n^g$.

Definition 2.1. Let *n* be a positive integer, and let *H* be a subgroup of $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$. The Galois polynomial $J_{n,H}(x)$ associated with *n* and *H* is the polynomial defined as

$$J_{n,H}(x) = \prod_{K \in G/H} (x - \alpha_K),$$

where $\alpha_K = \sum_{k \in K} \theta_k(\zeta_n) = \sum_{k \in K} \zeta_n^k$. In other words, if $\{g_1, \dots, g_m\}$ is a system of representatives of cosets of G by H, then

$$J_{n,H}(x) = \left(x - \sum_{h \in H} \zeta_n^{g_1 h}\right) \cdots \left(x - \sum_{h \in H} \zeta_n^{g_m h}\right).$$

Remark 2.2. From the definition, we can directly see that the Galois polynomial associated with n and the trivial subgroup $\{1\}$ is nothing but the n^{th} cyclotomic polynomial $\Phi_n(x)$. Also, the Galois polynomial associated with the subgroup $\{1, n-1\}$ was studied in [2].

Example 2.3. Consider the case of n = 16. There are exactly eight subgroups of $(\mathbb{Z}/16\mathbb{Z})^{\times}$:

$$H_{1} = \{1, 9\},\$$

$$H_{2} = \{1, 3, 9, 11\},\$$

$$H_{3} = \{1, 5, 9, 13\},\$$

$$H_{4} = \{1, 7, 9, 15\},\$$

$$H_{5} = \{1, 3, 5, 7, 9, 11, 13, 15\},\$$

$$K_{1} = \{1\},\$$

$$K_{2} = \{1, 7\},\$$

$$K_{3} = \{1, 15\}.$$

For each subgroup, the associated Galois polynomials is given as follows:

$$J_{16,H_1}(x) = x^4,$$

$$J_{16,H_2}(x) = x^2,$$

$$J_{16,H_3}(x) = x^2,$$

$$J_{16,H_4}(x) = x^2,$$

$$J_{16,H_5}(x) = x,$$

$$J_{16,K_1}(x) = x^8 + 1 = \Phi_{16}(x),$$

$$J_{16,K_2}(x) = x^4 + 4x^2 + 2,$$

$$J_{16,K_3}(x) = x^4 - 4x^2 + 2.$$

2.2. An action of G/H on the set $\{\alpha_K \mid K \in G/H\}$

Let *n* be a positive integer and $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$. Via the map $\theta \colon G \to \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, the group *G* acts on the set $\{\alpha_K \mid K \in G/H\}$ as follows:

$$g \cdot \alpha_K = \theta_g(\alpha_K) = \theta_g\left(\sum_{k \in K} \zeta_n^k\right) = \sum_{k \in K} \zeta_n^{gk} = \alpha_{gK}$$

Since *H* is a subgroup of *G*, and since *G* is abelian, it can be easily seen that *H* acts on $\{\alpha_K \mid K \in G/H\}$ trivially, from which it follows that the action of *G* induces the action of *G/H* on the set $\{\alpha_K \mid K \in G/H\}$. Moreover, the action of *G* on $\{\alpha_K \mid K \in G/H\}$ is transitive. In fact, for any $K \in G/H$, if $k \in K$ then we have $k \cdot \alpha_H = \alpha_{kH} = \alpha_K$. Thus, G/H also acts on $\{\alpha_K \mid K \in G/H\}$ transitively; that is, the orbit of α_H under the action of G/H is equal to $\{\alpha_K \mid K \in G/H\}$. Gicheol Shin, Jae Yun Bae, and Ki-Suk Lee

2.3. Basic properties

Notice that the extension $\mathbb{Q}(\zeta_n)$ of \mathbb{Q} is a Galois extension. It follows that the minimal polynomial $\operatorname{irr}(\alpha_H, \mathbb{Q})$ of α_H over \mathbb{Q} is

(1)
$$\operatorname{irr}(\alpha_H, \mathbb{Q})(x) = \prod_{\alpha_K \in \operatorname{Orb}_G(\alpha_H)} (x - \alpha_K),$$

where $\operatorname{Orb}_G(\alpha_H)$ is the orbit of α_H , *i.e.*, $\operatorname{Orb}_G(\alpha_H) = \{\alpha_K \mid K \in G/H\}$. Hence, the Galois polynomial $J_{n,H}(x)$ is a power of $\operatorname{irr}(\alpha_H, \mathbb{Q})(x)$; more precisely, we have

(2)
$$J_{n,H}(x) = \left(\operatorname{irr}(\alpha_H, \mathbb{Q})(x)\right)^{\ell},$$

where $\ell = |\operatorname{Stab}_{G/H}(\alpha_H)| = |G/H|/|\operatorname{Orb}_G(\alpha_H)|.$

Hence, we obtain the following lemma:

Lemma 2.4. Let *n* be a positive integer, and let *H* be a subgroup of $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then the following statements are true.

- 1. All coefficients of $J_{n,H}(x)$ are rational, *i.e.*, $J_{n,H}(x) \in \mathbb{Q}[x]$.
- 2. $\operatorname{Stab}_{G/H}(\alpha_H) = G/H$ if and only if $J_{n,H}(x)$ is of the form x^{ℓ} .
- 3. Stab_{G/H} = {1} if and only if $J_{n,H}(x)$ is irreducible over \mathbb{Q} .

Remark 2.5. In fact, for any n and H, the Galois polynomial $J_{n,H}(x)$ is a monic polynomial with integer coefficients. Moreover, for a proper subgroup H, $\operatorname{Stab}_{G/H}(\alpha_H) = G/H$ if and only if $\alpha_H = 0$. See [1] for a proof and details. Also, in [1], it was proven that if n is square-free, then the Galois polynomial $J_{n,H}(x)$ associated with any subgroup is irreducible over \mathbb{Q} .

3. Galois Polynomials for $n = p_1^{e_1} \cdots p_r^{e_r}$ with $e_i \ge 2$ $(1 \le i \le r)$

Throughout this section, we assume that n is a fixed positive integer with prime decomposition $n = p_1^{e_1} \cdots p_r^{e_r}$, where p_1, \cdots, p_r are distinct prime numbers and each e_i $(1 \le i \le r)$ is greater than 1. Under this assumption, we will characterize subgroups H for which $J_{n,H}$ is irreducible over \mathbb{Q} .

Let $\overline{n} = p_1 \cdots p_r$ denote the radical of n and $d = n/\overline{n}$.

3.1. The subgroup C of $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Since $gcd(1 + \ell d, n) = 1$ for any $\ell \in \mathbb{Z}$, we may regard $1 + \ell d$ as an element of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. Consider the subset $C = \{1 + \ell d \mid \ell \in \mathbb{Z}\}$

of $(\mathbb{Z}/n\mathbb{Z})^{\times}$. Observe that $e_i \geq 2$ $(1 \leq i \leq r)$ implies

(3)
$$d^2 \equiv p_1^{2(e_1-1)} \cdots p_r^{2(e_r-1)} \equiv n p_1^{e_1-2} \cdots p_r^{e_r-2} \equiv 0 \pmod{n},$$

hence, $d^k \equiv 0 \mod n$ for all $k \ge 2$. Thus, we obtain

(4)
$$(1+d)^{\ell} \equiv 1 + \ell d \pmod{n} \qquad (\ell \in \mathbb{Z}),$$

from which it follows that the subset C is the cyclic subgroup of H generated by the element 1 + d.

3.2. The sum $\alpha_H = \sum_{h \in H} \zeta_n^h$

We first provide a criterion for a subset H of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to satisfy $\sum_{h \in H} \zeta_n^h = 0$, which plays an important role in proving our main theorem (Theorem 3.7).

Lemma 3.1. Let H be a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ with $H \cap C \neq \{1\}$. Then we have $\sum_{h \in H} \zeta_n^h = 0$.

Proof. Since C is a cyclic group, $K = H \cap C$ is also cyclic. Let $1 + \ell d$ be a generator of K. Then by assumption, we have $1 + \ell d \not\equiv 1 \pmod{n}$.

Thus if m is the order of the element $1 + \ell d$, then

$$\sum_{k \in K} \zeta_n^k = \sum_{i=0}^{m-1} \zeta_n^{1+i\ell d} = \zeta_n \sum_{i=0}^{m-1} \zeta_n^{i\ell d}$$
$$= \zeta_n \frac{1 - \zeta_n^{m\ell d}}{1 - \zeta_n^{\ell d}} = 0.$$

Now pick a system $\{h_1, \dots, h_s\}$ of representatives of cosets of H by K. Then we have

$$\sum_{h \in H} \zeta_n^h = \sum_{j=1}^s \theta_{h_j} \left(\sum_{k \in K} \zeta_n^k \right) = \sum_{j=1}^s \theta_{h_j}(0) = 0,$$

as desired.

Example 3.2. Consider the case of $n = 16 = 2^4$, $\overline{n} = 2$, and d = 8. In this case, we have $C = \{1, 9\}$. Only subgroups containing 9 of $(\mathbb{Z}/16\mathbb{Z})^{\times}$ are

$$H_1 = \{1, 9\} = C,$$

$$H_2 = \{1, 3, 9, 11\},$$

$$H_3 = \{1, 5, 9, 13\},$$

$$H_4 = \{1, 7, 9, 15\}, and$$

$$H_5 = \{1, 3, 5, 7, 9, 11, 13, 15\} = (\mathbb{Z}/16\mathbb{Z})^{\times}.$$

285

Gicheol Shin, Jae Yun Bae, and Ki-Suk Lee

FIGURE 1. the sum $\alpha_{H_i} = \sum_{h \in H_i} \zeta_{16}^h$ for each i = 1, 2, 3, 4, 5

For this small example, figure 1 shows that for each subgroup $H_i(1 \le i \le 5)$, the sum $\sum_{h \in H_i} \zeta_{16}^h$ equals zero by symmetry.

On the other hand, $(\mathbb{Z}/16\mathbb{Z})^{\times}$ has exactly three subgroups not containing 9:

$$K_1 = \{1\}, K_2 = \{1, 7\}, \text{ and } K_3 = \{1, 15\},\$$

and obviously, we have

$$\zeta_{16} \neq 0, \ \zeta_{16} + \zeta_{16}^7 \neq 0, \ and \ \zeta_{16} + \zeta_{16}^{15} \neq 0 \ (See figure 2).$$

Example 3.3. Let $n = 9 = 3^2$, $\overline{n} = 3$, and d = 3. In this case, we have $C = \{1, 4, 7\}$. Notice that C is a cyclic group of order 3, from which it follows that if $H \cap C \neq \{1\}$, then $H \cap C = C$; in other words, if H contains either 4 or 7, then H contains both 4 and 7. There are exactly two subgroups containing 4 and 7:

$$H_1 = \{1, 4, 7\}, \qquad H_2 = \{1, 2, 4, 5, 7, 8\} = (\mathbb{Z}/9\mathbb{Z})^{\times},$$

Irreducibility of Galois Polynomials

FIGURE 2. the sum $\alpha_{K_i} = \sum_{h \in K_i} \zeta_{16}^h$ for each i = 1, 2, 3

FIGURE 3. The sum $\alpha_{H_i} = \sum_{h \in H_i} \zeta_9^h$ for each i = 1, 2, 3, 4, 5

Figure 3 shows

$$\sum_{h \in H_1} \zeta_9^h = \zeta_9 + \zeta_9^4 + \zeta_9^7 = 0, \text{ and}$$
$$\sum_{h \in H_2} \zeta_9^h = \zeta_9 + \zeta_9^2 + \zeta_9^4 + \zeta_9^5 + \zeta_9^7 + \zeta_9^8 = 0$$

by symmetry.

Gicheol Shin, Jae Yun Bae, and Ki-Suk Lee

h	ζ^h_{16}				h	ζ^h_{16}	
1	ζ_{16}				9	$-\zeta_{16}$	
3		ζ_{16}^3			11	$-\zeta_{16}^3$	
5		-	ζ_{16}^5		13	$-\zeta_{16}^{5}$	
7			10	ζ_{16}^7	15	$-\zeta_{16}^7$	

TABLE 1. expressions of ζ_{16}^h for $h \in (\mathbb{Z}/16\mathbb{Z})^{\times}$

3.3. An expression of $\zeta_n^h \in \mathbb{Q}(\zeta_n)$ $(h \in (\mathbb{Z}/n\mathbb{Z})^{\times})$

In fact, the converse of the Lemma 3.1 is true. Before proving this, it is worthwhile to express ζ_n^h for $h \in G = (\mathbb{Z}/n\mathbb{Z})^{\times}$ as a \mathbb{Q} -linear combination of $1, \zeta_n, \cdots, \zeta_n^{\phi(n)-1}$. First notice that every $h \in G = (\mathbb{Z}/n\mathbb{Z})^{\times}$ can be uniquely expressed as $h = m + \ell d$, where $m \in \{0, 1, \cdots, d-1\}$ and $\ell \in \{0, 1, \cdots, \overline{n} - 1\}$. Thus, we obtain $\zeta_n^h = \zeta_n^{m+\ell d} = \zeta_n^m \zeta_n^{\ell d} = \zeta_n^m \zeta_n^{\ell}$. On the other hand, since $\zeta_n^{\ell} \in \mathbb{Q}(\zeta_n)$, we can rewrite ζ_n^{ℓ} as

$$\zeta_{\overline{n}}^{\ell} = a_0 + a_1 \zeta_{\overline{n}} + \dots + a_{\phi(\overline{n}) - 1} \zeta_{\overline{n}}^{\phi(\overline{n}) - 1} \qquad (a_0, a_1, \dots, a_{\phi(\overline{n}) - 1} \in \mathbb{Q}).$$

Hence, we can express ζ_n^h as follows:

$$\begin{aligned} \zeta_n^h &= \zeta_n^m \left(a_0 + a_1 \zeta_{\overline{n}} + \dots + a_{\phi(\overline{n})-1} \zeta_{\overline{n}}^{\phi(\overline{n})-1} \right) \\ &= \zeta_n^m \left(a_0 + a_1 \zeta_n^d + \dots + a_{\phi(\overline{n})-1} \zeta_n^{(\phi(\overline{n})-1)d} \right) \\ &= a_0 \zeta_n^m + a_1 \zeta_n^{m+d} + \dots + a_{\phi(\overline{n})-1} \zeta_n^{m+(\phi(\overline{n})-1)d}. \end{aligned}$$

Since

$$m + (\phi(\overline{n}) - 1)d < d + (\phi(\overline{n}) - 1)d$$

= $\phi(\overline{n})d = (p_1 - 1)p_1^{e_1 - 1} \cdots (p_r - 1)p_r^{e_r - 1} = \phi(n),$

only ζ_n^{m+id} terms $(i = 0, 1, \dots, \phi(\overline{n}) - 1)$ possibly appear in the expression of ζ_n^h as a linear combination of $1, \zeta_n, \dots, \zeta_n^{\phi(n)-1}$.

Example 3.4. Let $n = 16 = 2^4$, $\overline{n} = 2$, and d = 8. Using the fact $\Phi_{16}(x) = x^8 + 1$ (hence, $\zeta_{16}^8 = -1$), we can easily verify Table 1, which shows an expression of each primitive root ζ_{16}^h of unity as a linear combination.

Example 3.5. Let $n = 9 = 3^2$, $\overline{n} = 3$, and d = 3. In this case, we have $\Phi_9(x) = x^6 + x^3 + 1$. Table 2 shows an expression of each primitive root ζ_9^h of unity as a linear combination.

Irreducibility of Galois Polynomials

h	ζ_9^h	h	ζ_9^h	h	ζ_9^h
1	ζ_9	4	ζ_9^4	7	$-\zeta_9 - \zeta_9^4$
2	ζ_9^2	5	ζ_9^5	8	$-\zeta_9^2$ $-\zeta_9^5$

TABLE 2. expressions of ζ_9^h for $h \in (\mathbb{Z}/9\mathbb{Z})^{\times}$

Theorem 3.6. Let *H* be a subgroup of $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then $\sum_{h \in H} \zeta_n^h = 0$ if and only if *H* contains an element $\neq 1$ of the form $1 + \ell d$.

Proof. In lemma 3.1, we showed "if" direction, so we prove "only if" direction here. Suppose that H has no element of the form $1 + \ell d$ except for the identity 1. As we have seen, for any $h \in H \setminus \{1\}$, ζ_n term never appear in the expression of ζ_n^h as a linear combination of $1, \zeta_n, \dots, \zeta_n^{\phi(n)-1}$. Since $1 \in H$, apparently, ζ_n appears in the sum $\sum_{h \in H} \zeta_n^h$, *i.e.*,

$$\sum_{h \in H} \zeta_n^h = \zeta_n + (\text{a linear combination of the others } 1, \zeta_n^2, \cdots, \zeta_n^{\phi(n)-1}),$$

from which it follows that the sum $\sum_{h \in H} \zeta_n^h$ never equals zero.

3.4. Main result

Now we are ready to prove our main result on irreducibility of Galois polynomials.

Theorem 3.7. Let H be a subgroup of $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$ which has no element of the form $1 + \ell d$ except for the identity 1, *i.e.*, $H \cap C =$ {1}. Then the Galois polynomial $J_{n,H}(x)$ associated with n and H is irreducible over \mathbb{Q} .

Proof. Thanks to lemma 2.4, it suffices to show that for any $k \in G \setminus H$, two sums $\sum_{h \in H} \zeta_n^h$ and $\sum_{h \in H} \zeta_n^{kh}$ are different. Assume to the contrary that for some $k \in G \setminus H$, we have $\sum_{h \in H} \zeta_n^h = \sum_{h \in H} \zeta_n^{kh}$. In the proof of theorem 3.6, we have seen

(5)
$$\left(\sum_{h\in H}\zeta_n^h\right) - \zeta_n = (\text{a linear combination of } 1, \zeta_n^2, \cdots, \zeta_n^{\phi(n)-1}),$$

which implies that the coset kH should contain at least one element of the form $1 + \ell d$. Let $x = 1 + \ell d$ denote such an element of kH. On the other hand, since H and kH are disjoint and $1 \in H$, we have $x \neq 1$,

which implies $\zeta_n^x \neq \zeta_n$. Thus, ζ_n^x should be either a scalar multiple of ζ_n which is not equal to ζ_n or of the form

$$\zeta_n + \left(\text{nonzero linear combination of } \zeta_n^{1+d}, \cdots, \zeta_n^{1+(\phi(\overline{n})-1)d} \right).$$

Since the terms ζ_n^{1+id} $(i = 1, \dots, \phi(\overline{n}) - 1)$ never appear in the expression 5, we can conclude that kH also contain another element $y = 1 + \ell'd$ with $x \neq y$ in both case. It follows that the element $1 + (\ell - \ell')d = (1 + \ell d)(1 - \ell'd) = xy^{-1}(\neq 1)$ belongs to H, which is absurd. \Box

From lemma 2.4 and the theorem above, we directly see:

Corollary 3.8. For any subgroup H of $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$, the stabilizer

$$\operatorname{Stab}_{G/H}(a_H) = \operatorname{Stab}_{G/H}\left(\sum_{h \in H} \zeta_n^h\right)$$

is either {1} or G/H. Hence, the Galois polynomial is either irreducible over \mathbb{Q} or equal to $x^{|G/H|}$.

3.5. Future research

First of all, we are still interested in characterizing subgroups which produce irreducible Galois polynomials for general n to find a complete answer to the question which was mentioned in the introduction.

Second, since all coefficients of Galois polynomials are integers, we would like to study those mysterious coefficients in a combinatorial way. For example, motivated by the fact

$$\Phi_n(1) = \begin{cases} p & \text{if } n = p^k, \\ 1 & \text{if } n \text{ is divisible by two or more distinct prime numbers,} \end{cases}$$

possible questions are what the integer $J_{n,H}(1)$ is and how it can be related with n and H.

References

- M. Y. Kwon, J. E. Lee and K. S. Lee, *Galois Irreducible Polynomials*, Commun. Korean Math. Soc. 32(2017), No. 1, 1-6.
- [2] K. S. Lee, J. E. Lee and J. H. Kim, Semi-cyclotomic polynomials, Honam Mathematical J. 37(2015), No. 4, 469-472.
- [3] K. S. Lee and J. E. Lee, Classification of Galois Polynomials, Honam Mathematical J. 39(2017), No. 2, 259-265.

Gicheol Shin Department of Mathematics, University of California Davis, One Shields Ave, Davis, CA 95616-8633, U.S.A. E-mail: gshin@math.ucdavis.edu

Jae Yun Bae Department of Mathematics Education, Korea National University of Education, Cheongjusi, Chungbuk 28173, Republic of Korea. E-mail: baejaeyun@hanmail.net

Ki-Suk Lee Department of Mathematics Education, Korea National University of Education, Cheongjusi, Chungbuk 28173, Republic of Korea. E-mail: ksleeknue@gmail.com