IRREDUCIBILITY OF GALOIS POLYNOMIALS

Gicheol Shin, Jae Yun Bae, and Ki-Suk Lee*

Abstract

We associate a positive integer n and a subgroup H of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$with a polynomial $J_{n, H}(x)$, which is called the Galois polynomial. It turns out that $J_{n, H}(x)$ is a polynomial with integer coefficients for any n and H. In this paper, we provide an equivalent condition for a subgroup H to provide the Galois polynomial which is irreducible over \mathbb{Q} in the case of $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ (prime decomposition) with all $e_{i} \geq 2$.

For a positive integer n, we denote the $n^{\text {th }}$ primitive root $e^{2 \pi i / n}$ of unity by ζ_{n}, and the (multiplicative) group consisting of all invertible elements in the ring $\mathbb{Z} / n \mathbb{Z}$ by $(\mathbb{Z} / n \mathbb{Z})^{\times}$throughout this paper. Also, $\phi(n)$ denotes the Euler's phi function, i.e., $\phi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|$.

1. Introduction

Let n be a positive integer. It is well known that the $n^{\text {th }}$ cyclotomic polynomial

$$
\Phi_{n}(x)=\prod_{i \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(x-\zeta_{n}^{i}\right)
$$

is a polynomial of degree $\phi(n)$ with integer coefficients, and that it is irreducible over \mathbb{Q}, the field of rational numbers.

Let H be a subgroup of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$. In paper [1], Kwon, Lee, and the third author first introduced the Galois polynomial $J_{n, H}(x)$ associated with n and H as a generalization of the cyclotomic polynomial $\Phi_{n}(x)$, and provided several properties of $J_{n, H}(x)$: as the cyclotomic polynomial $\Phi_{n}(x)$ is, the Galois polynomial $J_{n, H}(x)$ is a polynomial with integer coefficients. In addition, if n is square-free, then $J_{n, H}$ is

[^0]irreducible over \mathbb{Q} for any subgroup H. We will give a brief review of definition of Galois polynomials and their properties in the next section.

However, if n is divisible by p^{2} for some prime number p, some subgroup H fails to produce the Galois polynomial which is irreducible over \mathbb{Q}. The question then arises: for such an integer n, what are (sufficient, necessary, or both) conditions for a subgroup H to produce the irreducible Galois polynomial over \mathbb{Q} ? In the last section, we will provide an answer to this question when n has prime decomposition $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with $e_{i} \geq 2(1 \leq i \leq r)$, where p_{1}, \cdots, p_{r} are distinct prime numbers. Also, we will briefly discuss some possible directions for future research.

2. A review of Galois Polynomials

In this section, we briefly review Galois polynomials and their basic properties.

2.1. Definition of $J_{n, H}(x)$

Let n be a positive integer. It is well known that the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ of the field extension $\mathbb{Q}\left(\zeta_{n}\right)$ over \mathbb{Q} is isomorphic to the $\operatorname{group}(\mathbb{Z} / n \mathbb{Z})^{\times}$via the isomorphism $\theta:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right), \theta(g)$ $=\theta_{g}$, which is given by $\theta_{g}\left(\zeta_{n}\right)=\zeta_{n}^{g}$.

Definition 2.1. Let n be a positive integer, and let H be a subgroup of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$. The Galois polynomial $J_{n, H}(x)$ associated with n and H is the polynomial defined as

$$
J_{n, H}(x)=\prod_{K \in G / H}\left(x-\alpha_{K}\right),
$$

where $\alpha_{K}=\sum_{k \in K} \theta_{k}\left(\zeta_{n}\right)=\sum_{k \in K} \zeta_{n}^{k}$. In other words, if $\left\{g_{1}, \cdots, g_{m}\right\}$ is a system of representatives of cosets of G by H, then

$$
J_{n, H}(x)=\left(x-\sum_{h \in H} \zeta_{n}^{g_{1} h}\right) \cdots\left(x-\sum_{h \in H} \zeta_{n}^{g_{m} h}\right) .
$$

Remark 2.2. From the definition, we can directly see that the Galois polynomial associated with n and the trivial subgroup $\{1\}$ is nothing but the $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}(x)$. Also, the Galois polynomial associated with the subgroup $\{1, n-1\}$ was studied in [2].

Example 2.3. Consider the case of $n=16$. There are exactly eight subgroups of $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$:

$$
\begin{aligned}
H_{1} & =\{1,9\} \\
H_{2} & =\{1,3,9,11\} \\
H_{3} & =\{1,5,9,13\} \\
H_{4} & =\{1,7,9,15\} \\
H_{5} & =\{1,3,5,7,9,11,13,15\} \\
K_{1} & =\{1\} \\
K_{2} & =\{1,7\} \\
K_{3} & =\{1,15\}
\end{aligned}
$$

For each subgroup, the associated Galois polynomials is given as follows:

$$
\begin{aligned}
J_{16, H_{1}}(x) & =x^{4}, \\
J_{16, H_{2}}(x) & =x^{2}, \\
J_{16, H_{3}}(x) & =x^{2}, \\
J_{16, H_{4}}(x) & =x^{2}, \\
J_{16, H_{5}}(x) & =x, \\
J_{16, K_{1}}(x) & =x^{8}+1=\Phi_{16}(x), \\
J_{16, K_{2}}(x) & =x^{4}+4 x^{2}+2, \\
J_{16, K_{3}}(x) & =x^{4}-4 x^{2}+2 .
\end{aligned}
$$

2.2. An action of G / H on the set $\left\{\alpha_{K} \mid K \in G / H\right\}$

Let n be a positive integer and $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$. Via the map $\theta: G \rightarrow$ $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$, the group G acts on the set $\left\{\alpha_{K} \mid K \in G / H\right\}$ as follows:

$$
g \cdot \alpha_{K}=\theta_{g}\left(\alpha_{K}\right)=\theta_{g}\left(\sum_{k \in K} \zeta_{n}^{k}\right)=\sum_{k \in K} \zeta_{n}^{g k}=\alpha_{g K}
$$

Since H is a subgroup of G, and since G is abelian, it can be easily seen that H acts on $\left\{\alpha_{K} \mid K \in G / H\right\}$ trivially, from which it follows that the action of G induces the action of G / H on the set $\left\{\alpha_{K} \mid K \in G / H\right\}$. Moreover, the action of G on $\left\{\alpha_{K} \mid K \in G / H\right\}$ is transitive. In fact, for any $K \in G / H$, if $k \in K$ then we have $k \cdot \alpha_{H}=\alpha_{k H}=\alpha_{K}$. Thus, G / H also acts on $\left\{\alpha_{K} \mid K \in G / H\right\}$ transitively; that is, the orbit of α_{H} under the action of G / H is equal to $\left\{\alpha_{K} \mid K \in G / H\right\}$.

2.3. Basic properties

Notice that the extension $\mathbb{Q}\left(\zeta_{n}\right)$ of \mathbb{Q} is a Galois extension. It follows that the minimal polynomial $\operatorname{irr}\left(\alpha_{H}, \mathbb{Q}\right)$ of α_{H} over \mathbb{Q} is

$$
\begin{equation*}
\operatorname{irr}\left(\alpha_{H}, \mathbb{Q}\right)(x)=\prod_{\alpha_{K} \in \operatorname{Orb}_{G}\left(\alpha_{H}\right)}\left(x-\alpha_{K}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{Orb}_{G}\left(\alpha_{H}\right)$ is the orbit of α_{H}, i.e., $\operatorname{Orb}_{G}\left(\alpha_{H}\right)=\left\{\alpha_{K} \mid K \in G / H\right\}$. Hence, the Galois polynomial $J_{n, H}(x)$ is a power of $\operatorname{irr}\left(\alpha_{H}, \mathbb{Q}\right)(x)$; more precisely, we have

$$
\begin{equation*}
J_{n, H}(x)=\left(\operatorname{irr}\left(\alpha_{H}, \mathbb{Q}\right)(x)\right)^{\ell} \tag{2}
\end{equation*}
$$

where $\ell=\left|\operatorname{Stab}_{G / H}\left(\alpha_{H}\right)\right|=|G / H| /\left|\operatorname{Orb}_{G}\left(\alpha_{H}\right)\right|$.
Hence, we obtain the following lemma:
Lemma 2.4. Let n be a positive integer, and let H be a subgroup of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$. Then the following statements are true.

1. All coefficients of $J_{n, H}(x)$ are rational, i.e., $J_{n, H}(x) \in \mathbb{Q}[x]$.
2. $\operatorname{Stab}_{G / H}\left(\alpha_{H}\right)=G / H$ if and only if $J_{n, H}(x)$ is of the form x^{ℓ}.
3. $\mathrm{Stab}_{G / H}=\{1\}$ if and only if $J_{n, H}(x)$ is irreducible over \mathbb{Q}.

Remark 2.5. In fact, for any n and H, the Galois polynomial $J_{n, H}(x)$ is a monic polynomial with integer coefficients. Moreover, for a proper subgroup $H, \operatorname{Stab}_{G / H}\left(\alpha_{H}\right)=G / H$ if and only if $\alpha_{H}=0$. See [1] for a proof and details. Also, in [1], it was proven that if n is squarefree, then the Galois polynomial $J_{n, H}(x)$ associated with any subgroup is irreducible over \mathbb{Q}.
3. Galois Polynomials for $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with $e_{i} \geq 2(1 \leq i \leq r)$

Throughout this section, we assume that n is a fixed positive integer with prime decomposition $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where p_{1}, \cdots, p_{r} are distinct prime numbers and each $e_{i}(1 \leq i \leq r)$ is greater than 1 . Under this assumption, we will characterize subgroups H for which $J_{n, H}$ is irreducible over \mathbb{Q}.

Let $\bar{n}=p_{1} \cdots p_{r}$ denote the radical of n and $d=n / \bar{n}$.

3.1. The subgroup C of $(\mathbb{Z} / n \mathbb{Z})^{\times}$

Since $\operatorname{gcd}(1+\ell d, n)=1$ for any $\ell \in \mathbb{Z}$, we may regard $1+\ell d$ as an element of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$. Consider the subset $C=\{1+\ell d \mid \ell \in \mathbb{Z}\}$
of $(\mathbb{Z} / n \mathbb{Z})^{\times}$. Observe that $e_{i} \geq 2(1 \leq i \leq r)$ implies
(3) $\quad d^{2} \equiv p_{1}^{2\left(e_{1}-1\right)} \cdots p_{r}^{2\left(e_{r}-1\right)} \equiv n p_{1}^{e_{1}-2} \cdots p_{r}^{e_{r}-2} \equiv 0(\bmod n)$,
hence, $d^{k} \equiv 0 \bmod n$ for all $k \geq 2$. Thus, we obtain

$$
\begin{equation*}
(1+d)^{\ell} \equiv 1+\ell d(\bmod n) \quad(\ell \in \mathbb{Z}) \tag{4}
\end{equation*}
$$

from which it follows that the subset C is the cyclic subgroup of H generated by the element $1+d$.

3.2. The sum $\alpha_{H}=\sum_{h \in H} \zeta_{n}^{h}$

We first provide a criterion for a subset H of $(\mathbb{Z} / n \mathbb{Z})^{\times}$to satisfy $\sum_{h \in H} \zeta_{n}^{h}=0$, which plays an important role in proving our main theorem (Theorem 3.7).

Lemma 3.1. Let H be a subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$with $H \cap C \neq\{1\}$. Then we have $\sum_{h \in H} \zeta_{n}^{h}=0$.

Proof. Since C is a cyclic group, $K=H \cap C$ is also cyclic. Let $1+\ell d$ be a generator of K. Then by assumption, we have $1+\ell d \not \equiv 1(\bmod n)$.

Thus if m is the order of the element $1+\ell d$, then

$$
\begin{aligned}
\sum_{k \in K} \zeta_{n}^{k} & =\sum_{i=0}^{m-1} \zeta_{n}^{1+i \ell d}=\zeta_{n} \sum_{i=0}^{m-1} \zeta_{n}^{i \ell d} \\
& =\zeta_{n} \frac{1-\zeta_{n}^{m \ell d}}{1-\zeta_{n}^{\ell d}}=0
\end{aligned}
$$

Now pick a system $\left\{h_{1}, \cdots, h_{s}\right\}$ of representatives of cosets of H by K. Then we have

$$
\sum_{h \in H} \zeta_{n}^{h}=\sum_{j=1}^{s} \theta_{h_{j}}\left(\sum_{k \in K} \zeta_{n}^{k}\right)=\sum_{j=1}^{s} \theta_{h_{j}}(0)=0
$$

as desired.
Example 3.2. Consider the case of $n=16=2^{4}, \bar{n}=2$, and $d=$ 8. In this case, we have $C=\{1,9\}$. Only subgroups containing 9 of $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$are

$$
\begin{aligned}
H_{1} & =\{1,9\}=C \\
H_{2} & =\{1,3,9,11\} \\
H_{3} & =\{1,5,9,13\} \\
H_{4} & =\{1,7,9,15\}, \text { and } \\
H_{5} & =\{1,3,5,7,9,11,13,15\}=(\mathbb{Z} / 16 \mathbb{Z})^{\times} .
\end{aligned}
$$

Figure 1. the sum $\alpha_{H_{i}}=\sum_{h \in H_{i}} \zeta_{16}^{h}$ for each $i=1,2,3,4,5$

For this small example, figure 1 shows that for each subgroup $H_{i}(1 \leq$ $i \leq 5)$, the sum $\sum_{h \in H_{i}} \zeta_{16}^{h}$ equals zero by symmetry.

On the other hand, $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$has exactly three subgroups not containing 9:

$$
K_{1}=\{1\}, K_{2}=\{1,7\}, \text { and } K_{3}=\{1,15\}
$$

and obviously, we have

$$
\zeta_{16} \neq 0, \zeta_{16}+\zeta_{16}^{7} \neq 0, \text { and } \zeta_{16}+\zeta_{16}^{15} \neq 0(\text { See figure } 2)
$$

Example 3.3. Let $n=9=3^{2}, \bar{n}=3$, and $d=3$. In this case, we have $C=\{1,4,7\}$. Notice that C is a cyclic group of order 3 , from which it follows that if $H \cap C \neq\{1\}$, then $H \cap C=C$; in other words, if H contains either 4 or 7 , then H contains both 4 and 7 . There are exactly two subgroups containing 4 and 7 :

$$
H_{1}=\{1,4,7\}, \quad H_{2}=\{1,2,4,5,7,8\}=(\mathbb{Z} / 9 \mathbb{Z})^{\times}
$$

Figure 2. the sum $\alpha_{K_{i}}=\sum_{h \in K_{i}} \zeta_{16}^{h}$ for each $i=1,2,3$

Figure 3. The sum $\alpha_{H_{i}}=\sum_{h \in H_{i}} \zeta_{9}^{h}$ for each $i=1,2,3,4,5$

Figure 3 shows

$$
\begin{aligned}
& \sum_{h \in H_{1}} \zeta_{9}^{h}=\zeta_{9}+\zeta_{9}^{4}+\zeta_{9}^{7}=0, \text { and } \\
& \sum_{h \in H_{2}} \zeta_{9}^{h}=\zeta_{9}+\zeta_{9}^{2}+\zeta_{9}^{4}+\zeta_{9}^{5}+\zeta_{9}^{7}+\zeta_{9}^{8}=0
\end{aligned}
$$

by symmetry.

h	ζ_{16}^{h}				h

TABLE 1. expressions of ζ_{16}^{h} for $h \in(\mathbb{Z} / 16 \mathbb{Z})^{\times}$

3.3. An expression of $\zeta_{n}^{h} \in \mathbb{Q}\left(\zeta_{n}\right)\left(h \in(\mathbb{Z} / n \mathbb{Z})^{\times}\right)$

In fact, the converse of the Lemma 3.1 is true. Before proving this, it is worthwhile to express ζ_{n}^{h} for $h \in G=(\mathbb{Z} / n \mathbb{Z})^{\times}$as a \mathbb{Q}-linear combination of $1, \zeta_{n}, \cdots, \zeta_{n}^{\phi(n)-1}$. First notice that every $h \in G=(\mathbb{Z} / n \mathbb{Z})^{\times}$ can be uniquely expressed as $h=m+\ell d$, where $m \in\{0,1, \cdots, d-1\}$ and $\ell \in\{0,1, \cdots, \bar{n}-1\}$. Thus, we obtain $\zeta_{n}^{h}=\zeta_{n}^{m+\ell d}=\zeta_{n}^{m} \zeta_{n}^{\ell d}=\zeta_{n}^{m} \zeta_{n}^{\ell}$. On the other hand, since $\zeta_{n}^{\ell} \in \mathbb{Q}\left(\zeta_{\bar{n}}\right)$, we can rewrite ζ_{n}^{ℓ} as

$$
\zeta_{\bar{n}}^{\ell}=a_{0}+a_{1} \zeta_{\bar{n}}+\cdots+a_{\phi(\bar{n})-1} \zeta_{\bar{n}}^{\phi(\bar{n})-1} \quad\left(a_{0}, a_{1}, \cdots, a_{\phi(\bar{n})-1} \in \mathbb{Q}\right) .
$$

Hence, we can express ζ_{n}^{h} as follows:

$$
\begin{aligned}
\zeta_{n}^{h} & =\zeta_{n}^{m}\left(a_{0}+a_{1} \zeta_{\bar{n}}+\cdots+a_{\phi(\bar{n})-1} \zeta_{\bar{n}}^{\phi(\bar{n})-1}\right) \\
& =\zeta_{n}^{m}\left(a_{0}+a_{1} \zeta_{n}^{d}+\cdots+a_{\phi(\bar{n})-1} \zeta_{n}^{(\phi(\bar{n})-1) d}\right) \\
& =a_{0} \zeta_{n}^{m}+a_{1} \zeta_{n}^{m+d}+\cdots+a_{\phi(\bar{n})-1} \zeta_{n}^{m+(\phi(\bar{n})-1) d} .
\end{aligned}
$$

Since

$$
\begin{aligned}
m+(\phi(\bar{n})-1) d & <d+(\phi(\bar{n})-1) d \\
& =\phi(\bar{n}) d=\left(p_{1}-1\right) p_{1}^{e_{1}-1} \cdots\left(p_{r}-1\right) p_{r}^{e_{r}-1}=\phi(n),
\end{aligned}
$$

only $\zeta_{n}^{m+i d}$ terms $(i=0,1, \cdots, \phi(\bar{n})-1)$ possibly appear in the expression of ζ_{n}^{h} as a linear combination of $1, \zeta_{n}, \cdots, \zeta_{n}^{\phi(n)-1}$.

Example 3.4. Let $n=16=2^{4}, \bar{n}=2$, and $d=8$. Using the fact $\Phi_{16}(x)=x^{8}+1$ (hence, $\zeta_{16}^{8}=-1$), we can easily verify Table 1, which shows an expression of each primitive root ζ_{16}^{h} of unity as a linear combination.

Example 3.5. Let $n=9=3^{2}, \bar{n}=3$, and $d=3$. In this case, we have $\Phi_{9}(x)=x^{6}+x^{3}+1$. Table 2 shows an expression of each primitive root ζ_{9}^{h} of unity as a linear combination.

h		ζ_{9}^{h}	h	ζ_{9}^{h}	h	ζ_{9}^{h}	
1	ζ_{9}		4	ζ_{9}^{4}	7	$-\zeta_{9}-\zeta_{9}^{4}$	
2		ζ_{9}^{2}	5		ζ_{9}^{5}	8	

TABLE 2. expressions of ζ_{9}^{h} for $h \in(\mathbb{Z} / 9 \mathbb{Z})^{\times}$

Theorem 3.6. Let H be a subgroup of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$. Then $\sum_{h \in H} \zeta_{n}^{h}=$ 0 if and only if H contains an element $\neq 1$ of the form $1+\ell d$.

Proof. In lemma 3.1, we showed "if" direction, so we prove "only if" direction here. Suppose that H has no element of the form $1+$ ℓd except for the identity 1 . As we have seen, for any $h \in H \backslash\{1\}$, ζ_{n} term never appear in the expression of ζ_{n}^{h} as a linear combination of $1, \zeta_{n}, \cdots, \zeta_{n}^{\phi(n)-1}$. Since $1 \in H$, apparently, ζ_{n} appears in the sum $\sum_{h \in H} \zeta_{n}^{h}$, i.e.,

$$
\sum_{h \in H} \zeta_{n}^{h}=\zeta_{n}+\left(\text { a linear combination of the others } 1, \zeta_{n}^{2}, \cdots, \zeta_{n}^{\phi(n)-1}\right)
$$

from which it follows that the sum $\sum_{h \in H} \zeta_{n}^{h}$ never equals zero.

3.4. Main result

Now we are ready to prove our main result on irreducibility of Galois polynomials.

Theorem 3.7. Let H be a subgroup of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$which has no element of the form $1+\ell d$ except for the identity 1, i.e., $H \cap C=$ $\{1\}$. Then the Galois polynomial $J_{n, H}(x)$ associated with n and H is irreducible over \mathbb{Q}.

Proof. Thanks to lemma 2.4, it suffices to show that for any $k \in G \backslash H$, two sums $\sum_{h \in H} \zeta_{n}^{h}$ and $\sum_{h \in H} \zeta_{n}^{k h}$ are different. Assume to the contrary that for some $k \in G \backslash H$, we have $\sum_{h \in H} \zeta_{n}^{h}=\sum_{h \in H} \zeta_{n}^{k h}$. In the proof of theorem 3.6, we have seen

$$
\begin{equation*}
\left(\sum_{h \in H} \zeta_{n}^{h}\right)-\zeta_{n}=\left(\text { a linear combination of } 1, \zeta_{n}^{2}, \cdots, \zeta_{n}^{\phi(n)-1}\right) \tag{5}
\end{equation*}
$$

which implies that the coset $k H$ should contain at least one element of the form $1+\ell d$. Let $x=1+\ell d$ denote such an element of $k H$. On the other hand, since H and $k H$ are disjoint and $1 \in H$, we have $x \neq 1$,
which implies $\zeta_{n}^{x} \neq \zeta_{n}$. Thus, ζ_{n}^{x} should be either a scalar multiple of ζ_{n} which is not equal to ζ_{n} or of the form

$$
\zeta_{n}+\left(\text { nonzero linear combination of } \zeta_{n}^{1+d}, \cdots, \zeta_{n}^{1+(\phi(\bar{n})-1) d}\right)
$$

Since the terms $\zeta_{n}^{1+i d}(i=1, \cdots, \phi(\bar{n})-1)$ never appear in the expression 5 , we can conclude that $k H$ also contain another element $y=1+\ell^{\prime} d$ with $x \neq y$ in both case. It follows that the element $1+\left(\ell-\ell^{\prime}\right) d=$ $(1+\ell d)\left(1-\ell^{\prime} d\right)=x y^{-1}(\neq 1)$ belongs to H, which is absurd.

From lemma 2.4 and the theorem above, we directly see:
Corollary 3.8. For any subgroup H of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$, the stabilizer

$$
\operatorname{Stab}_{G / H}\left(a_{H}\right)=\operatorname{Stab}_{G / H}\left(\sum_{h \in H} \zeta_{n}^{h}\right)
$$

is either $\{1\}$ or G / H. Hence, the Galois polynomial is either irreducible over \mathbb{Q} or equal to $x^{|G / H|}$.

3.5. Future research

First of all, we are still interested in characterizing subgroups which produce irreducible Galois polynomials for general n to find a complete answer to the question which was mentioned in the introduction.

Second, since all coefficients of Galois polynomials are integers, we would like to study those mysterious coefficients in a combinatorial way. For example, motivated by the fact

$$
\Phi_{n}(1)= \begin{cases}p & \text { if } n=p^{k} \\ 1 & \text { if } n \text { is divisible by two or more distinct prime numbers }\end{cases}
$$

possible questions are what the integer $J_{n, H}(1)$ is and how it can be related with n and H.

References

[1] M. Y. Kwon, J. E. Lee and K. S. Lee, Galois Irreducible Polynomials, Commun. Korean Math. Soc. 32(2017), No. 1, 1-6.
[2] K. S. Lee, J. E. Lee and J. H. Kim, Semi-cyclotomic polynomials, Honam Mathematical J. 37(2015), No. 4, 469-472.
[3] K. S. Lee and J. E. Lee, Classification of Galois Polynomials, Honam Mathematical J. 39(2017), No. 2, 259-265.

Gicheol Shin
Department of Mathematics, University of California Davis, One Shields Ave, Davis, CA 95616-8633, U.S.A.
E-mail: gshin@math.ucdavis.edu

Jae Yun Bae
Department of Mathematics Education, Korea National University of Education,
Cheongjusi, Chungbuk 28173, Republic of Korea.
E-mail: baejaeyun@hanmail.net
Ki-Suk Lee
Department of Mathematics Education, Korea National University of Education,
Cheongjusi, Chungbuk 28173, Republic of Korea.
E-mail: ksleeknue@gmail.com

[^0]: Received January 11, 2018. Revised March 3, 2018. Accepted March 14, 2018. 2010 Mathematics Subject Classification. 12D05, 12E05, 12F05, 12F10.
 Key words and phrases. n-th cyclotomic polynomial, Galois irreducible polynomial, semi-cyclotomic polynomial
 *corresponding author

