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IRREDUCIBILITY OF GALOIS POLYNOMIALS

GICHEOL SHIN, JAE YUN BAE, AND KI-SUK LEE*

Abstract. We associate a positive integer n and a subgroup H
of the group (Z/nZ)* with a polynomial Jy, g (x), which is called
the Galois polynomial. It turns out that J, g (z) is a polynomial
with integer coefficients for any n and H. In this paper, we provide
an equivalent condition for a subgroup H to provide the Galois
polynomial which is irreducible over Q in the case of n = pi* - - - py"
(prime decomposition) with all e; > 2.

For a positive integer n, we denote the n'® primitive root €27/ of
unity by (,, and the (multiplicative) group consisting of all invertible
elements in the ring Z/nZ by (Z/nZ)* throughout this paper. Also,
¢(n) denotes the Euler’s phi function, i.e., ¢(n) = |(Z/nZ)*|.

1. Introduction

Let n be a positive integer. It is well known that the n*® cyclotomic
polynomial

o= [[ @-¢)
i€(Z/nZ)*
is a polynomial of degree ¢(n) with integer coefficients, and that it is
irreducible over Q, the field of rational numbers.

Let H be a subgroup of the group (Z/nZ)*. In paper [1], Kwon,
Lee, and the third author first introduced the Galois polynomial .J,, i ()
associated with n and H as a generalization of the cyclotomic polynomial
®,,(z), and provided several properties of J, g(x): as the cyclotomic
polynomial ®,(x) is, the Galois polynomial J, g(x) is a polynomial
with integer coefficients. In addition, if n is square-free, then J, g is
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irreducible over Q for any subgroup H. We will give a brief review of
definition of Galois polynomials and their properties in the next section.

However, if n is divisible by p? for some prime number p, some sub-
group H fails to produce the Galois polynomial which is irreducible over
Q. The question then arises: for such an integer n, what are (sufficient,
necessary, or both) conditions for a subgroup H to produce the irre-
ducible Galois polynomial over Q7 In the last section, we will provide an
answer to this question when n has prime decomposition n = p{* - - - p&r
with e; > 2 (1 < i <r), where p1,---,p, are distinct prime numbers.
Also, we will briefly discuss some possible directions for future research.

2. A review of Galois Polynomials

In this section, we briefly review Galois polynomials and their basic
properties.

2.1. Definition of J,, y(x)

Let n be a positive integer. It is well known that the Galois group
Gal(Q(¢)/Q) of the field extension Q((;,) over Q is isomorphic to the
group (Z/nZ)* via the isomorphism 0: (Z/nZ)* — Gal(Q(¢,)/Q), 0(g)
= 0,, which is given by 6,4(¢,) = (7.

Definition 2.1. Let n be a positive integer, and let H be a subgroup
of G = (Z/nZ)*. The Galois polynomial J,, g (x) associated with n and
H is the polynomial defined as

I, (x) = H (x — ak),

KeG/H

where ax = Y 1o O(Cn) = Drek ¢F. In other words, if {g1, -, gm}
is a system of representatives of cosets of G by H, then

Jn,H(CU) — (x _ Z Cgm) (x_ Z Cgmh> .

heH heH

Remark 2.2. From the definition, we can directly see that the Galois
polynomial associated with n and the trivial subgroup {1} is nothing
but the n'" cyclotomic polynomial ®,,(z). Also, the Galois polynomial
associated with the subgroup {1,n — 1} was studied in [2].
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Example 2.3. Consider the case of n = 16. There are exactly eight
subgroups of (Z/16Z)* :
H, ={1,9},
Hy ={1,3,9,11},
Hs ={1,5,9,13},
Hy={1,7,9,15},
Hs ={1,3,5,7,9,11,13,15},

K, ={1},
Ky ={1,7},
Ks = {1,15}.

For each subgroup, the associated Galois polynomials is given as follows:

J16,1, () = 22,

Ji6,1; (z) = 22,

Ji6,m, (z) = 22,

Ji6,H5 () =,

Ji6,k, (x) = 2B41= Di6(x),
Ji6.1c, (2) = ot + 4% + 2,
Ji6,K5(2) = 2t — 422+ 2

2.2. An action of G/H on the set {ax | K € G/H}

Let n be a positive integer and G = (Z/nZ)*. Via the map 6: G —
Gal(Q(¢)/Q), the group G acts on the set {ax | K € G/H} as follows:

g9-ak =bg(ax) = b, (Z Cﬁ) = chk = QK-

keK keK

Since H is a subgroup of GG, and since G is abelian, it can be easily seen
that H acts on {ax | K € G/H} trivially, from which it follows that
the action of G induces the action of G/H on the set {ax | K € G/H}.
Moreover, the action of G on {ax | K € G/H} is transitive. In fact,
for any K € G/H, if k € K then we have k - ag = arg = ax. Thus,
G/H also acts on {ax | K € G/H} transitively; that is, the orbit of apy
under the action of G/H is equal to {ax | K € G/H}.
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2.3. Basic properties

Notice that the extension Q((,) of Q is a Galois extension. It follows
that the minimal polynomial irr(a g, Q) of oy over Q is

(1) irr(ag, Q)(z) = I @-ax),

ag€Orbg(agy)
where Orbg () is the orbit of ag, i.e., Orbg(ay) = {ax | K € G/H}.
Hence, the Galois polynomial J,, g (z) is a power of irr(ay, Q)(x); more
precisely, we have

(2) T, (x) = (irr(ar, Q) ()",
|

where ¢ = [Stabg /g (ap)| = |G/H|/|Orbg(amy)|.
Hence, we obtain the following lemma:

Lemma 2.4. Let n be a positive integer, and let H be a subgroup
of G = (Z/nZ)*. Then the following statements are true.

1. All coefficients of J,, g (x) are rational, i.e., Jp g(x) € Q[z].
2. Stabg /g (an) = G/H if and only if J,, u(z) is of the form zt.
3. Stabg g = {1} if and only if J,, () is irreducible over Q.

Remark 2.5. In fact, for any n and H, the Galois polynomial
Jn, 1 (x) is a monic polynomial with integer coefficients. Moreover, for a
proper subgroup H, Stabg,y(an) = G/H if and only if ay = 0. See
[1] for a proof and details. Also, in [1], it was proven that if n is square-
free, then the Galois polynomial J, g (x) associated with any subgroup
is irreducible over Q.

3. Galois Polynomials for n = p§' ---pf" withe; >2 (1 <i<r)

Throughout this section, we assume that n is a fixed positive integer
with prime decomposition n = p{'---p¢", where py,--- ,p, are distinct
prime numbers and each e; (1 < i < r) is greater than 1. Under this as-
sumption, we will characterize subgroups H for which J,, j is irreducible
over Q.

Let @ = py - - - p, denote the radical of n and d = n /7.

3.1. The subgroup C of (Z/nZ)*

Since ged(1 + 4d,n) = 1 for any ¢ € Z, we may regard 1 + ¢d as an
element of the group (Z/nZ)*. Consider the subset C = {1+/4d | { € Z}
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of (Z/nZ)*. Observe that e; > 2 (1 <14 <r) implies

3)  =p Ve = pph e = 0 (mod ),
hence, d* =0 mod n for all £k > 2. Thus, we obtain
(4) (1+d)f=1+4d(modn)  ({€Z),

from which it follows that the subset C' is the cyclic subgroup of H
generated by the element 1+ d.

3.2. The sum ay =3, (!

We first provide a criterion for a subset H of (Z/nZ)* to satisfy
Y oheH Cﬁ = 0, which plays an important role in proving our main theo-
rem (Theorem 3.7).

Lemma 3.1. Let H be a subgroup of (Z/nZ)* with H N C # {1}.
Then we have Y.y (P = 0.

Proof. Since C'is a cyclic group, K = HNC is also cyclic. Let 1+ 4d
be a generator of K. Then by assumption, we have 1+ ¢d #Z 1 (mod n).
Thus if m is the order of the element 1 + /d, then

m—1 m—1
k 1+ild ild
Y= Gt =6
keK =0 =0

1— mld

= G = 0.

Now pick a system {hy,---,hs} of representatives of cosets of H by
K. Then we have

Y= 0, (Z c,’z) = 0h,(0) =0,
j=1 Jj=1

heH keK
as desired. 0

Example 3.2. Consider the case of n = 16 = 2%, 7 = 2, and d =
8. In this case, we have C' = {1,9}. Only subgroups containing 9 of
(Z/16Z)* are

H, ={1,9} =C,

Hy ={1,3,9,11},

Hs ={1,5,9,13},

Hy={1,7,9,15}, and

Hs ={1,3,5,7,9,11,13,15} = (Z/16Z)*.
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FIGURE 1. the sum ag, =), p. ¢h for each i = 1,2,3,4,5

For this small example, figure 1 shows that for each subgroup H;(1 <
i <5), the sum ), p. (he equals zero by symmetry.

On the other hand, (Z/16Z)* has exactly three subgroups not con-
taining 9:

Ky = {1}, Ky ={1,7}, and K5 = {1,15},

and obviously, we have

Ci6 # 0, Ci6+ (lg #0, and Ci6 + Cig # 0 (See figure 2).

Example 3.3. Let n = 9 = 32, m = 3, and d = 3. In this case,
we have C' = {1,4,7}. Notice that C' is a cyclic group of order 3, from

which it follows that if H N C # {1}, then H N C = C; in other words,
if H contains either 4 or 7, then H contains both 4 and 7. There are
exactly two subgroups containing 4 and 7:

Hy={1,4,7},  Hy={1,2,4,5,7,8} = (Z/97)*.
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FIGURE 2. the sum af, = ) k. ¢h for each i = 1,2,3
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FIGURE 3. The sum apy, = ), p, ¢l for each i =1,2,3,4,5

Figure 3 shows
D G =C0+G+ =0, and
heHq

S =G+ GGG +E+E =0
heH»y

by symmetry.
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h (T h T

1|6 9 | —Ci6

3 ¢3, 11 — (i

5 3 13 —(f6

7 T |l 15 — (s

TABLE 1. expressions of (% for h € (Z/16Z)*

3.3. An expression of ¢! € Q((,) (h € (Z/nZ)*)

In fact, the converse of the Lemma 3.1 is true. Before proving this,
it is worthwhile to express ¢! for h € G = (Z/nZ)* as a Q-linear com-

bination of 1,(y, -+, C2™ ™. First notice that every h € G = (Z/nZ)X

can be uniquely expressed as h = m + ¢d, where m € {0,1,--- ,d — 1}
and £ € {0,1,--- ,m— 1}. Thus, we obtain ¢! = ¢+ = ¢m¢ld = ¢m¢L.
On the other hand, since ¢t € Q(Cn) we can rewrite (% as
(E=a+aG+ - +aym C¢(n (ao,a1, -, agm-1 € Q).
Hence, we can express Cf; as follows:
¢h=qr (ao taGz+ -+ agm 1C >

:¢%%+m¢+”+%m—ww4ﬂ

=ao( + a1+ -+ agm _y¢rHem=1d,
Since

m+ (¢p(m) — 1)d < d+ (¢p(m) — 1)d
= ¢(m)d = (pr — DpP -+ (pr — Vpir ™" = ¢(n),

only (™ terms (i = 0,1,--- , $(@) — 1) possibly appear in the expres-
sion of ¢/ as a linear combination of 1,(y, -, ff(n)

Example 3.4. Let n = 16 = 2%, 7= = 2, and d = 8. Using the
fact ®16(z) = 28 + 1 (hence, (5 = —1), we can easily verify Table 1,
which shows an expression of each primitive root (fs of unity as a linear
combination.

Example 3.5. Let n = 9 = 32, m = 3, and d = 3. In this case, we
have ®g(x) = 2%+ 23 + 1. Table 2 shows an expression of each primitive
root Cél of unity as a linear combination.
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h G h 4 h ¢

1] G 4 Co T G G

2| & 5 Glsl -4 =g
TABLE 2. expressions of (¥ for h € (Z/9Z)*

Theorem 3.6. Let H be a subgroup of G = (Z/nZ)*. Theny", ("
0 if and only if H contains an element # 1 of the form 1 + {d.

Proof. In lemma 3.1, we showed “if” direction, so we prove “only
if” direction here. Suppose that H has no element of the form 1 +
¢d except for the identity 1. As we have seen, for any h € H \ {1},
¢, term never appear in the expression of C,’f as a linear combination

of 1,¢p,--- ,Cg(n)fl. Since 1 € H, apparently, (, appears in the sum

>her Gus -,
Z Ch (a linear combination of the others 1 C “e ,Cff(")_l),
heH

from which it follows that the sum , ¢ never equals zero. O

3.4. Main result

Now we are ready to prove our main result on irreducibility of Galois
polynomials.

Theorem 3.7. Let H be a subgroup of G = (Z/nZ)* which has
no element of the form 1 + ¢d except for the identity 1, i.e., HNC =
{1}. Then the Galois polynomial J, p(x) associated with n and H is
irreducible over Q.

Proof. Thanks to lemma 2.4, it suffices to show that for any k € G\ H,
two sums ) ¢ and Y oheH ¢kh are different. Assume to the contrary

that for some k € G\ H, we have Y,y (4 =3, .y (¥ In the proof
of theorem 3.6, we have seen

(5) (Z Cn> ¢» = (a linear combination of 1,¢2, ..., ¢,

heH

which implies that the coset kH should contain at least one element of
the form 1+ ¢d. Let x = 1 + ¢d denote such an element of kH. On the
other hand, since H and kH are disjoint and 1 € H, we have x # 1,
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which implies (¥ # (,. Thus, ¥ should be either a scalar multiple of (,
which is not equal to , or of the form

Cn + (nonzero linear combination of ¢} +4, ... | }Lﬂd’(ﬁ)*l)d) .

Since the terms ¢!+ (i = 1,--- , ¢()—1) never appear in the expression
5, we can conclude that kH also contain another element y = 1 + ¢'d
with 2 # y in both case. It follows that the element 1+ (£ — ¢')d =

(1+¢d)(1 — ¢'d) = xy~1(# 1) belongs to H, which is absurd. O
From lemma 2.4 and the theorem above, we directly see:

Corollary 3.8. For any subgroup H of G = (Z/nZ)*, the stabilizer

Stabg/H(aH) = StabG/H (Z Cg)

heH

is either {1} or G/H. Hence, the Galois polynomial is either irreducible

over Q or equal to z!G/Hl,

3.5. Future research

First of all, we are still interested in characterizing subgroups which
produce irreducible Galois polynomials for general n to find a complete
answer to the question which was mentioned in the introduction.

Second, since all coefficients of Galois polynomials are integers, we
would like to study those mysterious coefficients in a combinatorial way.
For example, motivated by the fact

B,(1) = 17 if n = p,
"1 if nis divisible by two or more distinct prime numbers,

possible questions are what the integer J, (1) is and how it can be
related with n and H.
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