DOI QR코드

DOI QR Code

Analysis of Optimal Landing Trajectory in Attitude Angular Velocity Influence at Powered Descent Phase of Robotic Lunar Lander

무인 달착륙선의 동력하강단계에서 자세각속도 영향에 따른 최적화 착륙궤적 분석

  • Received : 2017.11.02
  • Accepted : 2018.03.26
  • Published : 2018.05.01

Abstract

In this paper, we propose a lunar landing scenario of a robotic lunar landing mission and implements an optimal landing trajectory at the powered descent phase based on the proposed scenario. The change of attitude of the lunar lander in the power descent phase affects not only the amount of fuel used but also sensor operation of image based navigation. Therefore, the attitude angular velocity is included in the cost function of the optimal control problem to minimize the unnecessary attitude change when the optimal landing trajectory generates at powered descent phase of the lunar landing. The influence of the change of attitude angular velocity on the optimal landing trajectory are analyzed by adjusting the weight of the attitude angular velocity. Based on the results, we suggest the proper weight to generate the optimal landing trajectory in order to minimize the influence of the attitude angular velocity.

이 논문에서는 무인 달착륙 임무를 위해 고려하고 있는 달착륙 시나리오를 제안하고 제안된 시나리오를 기반으로 동력하강단계에서의 최적화 착륙궤적을 구현한다. 동력하강단계에서 달착륙선의 자세 변화는 사용 연료량뿐만 아니라 영상기반 항법의 센서 운용에도 영향을 주므로 자세 변화가 급격하게 이루어지지 않도록 자세각속도를 최적제어 가격함수에 포함하고 이때 자세각속도의 영향을 조절하는 가중치가 최적화 착륙궤적에 미치는 영향을 분석한다. 분석된 결과를 바탕으로 연료 사용을 최소화하고 안정된 자세 변화를 갖도록 최적화 착륙궤적을 설계할 수 있는 적절한 가중치를 제시한다.

Keywords

References

  1. Park, J. I. and Rew, D. Y., "Study on Delta-V and Fuel Mass Analysis of Korean Lunar Lander Mission," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2017, pp. 354-355.
  2. Rew, D. Y., Park, J. I., Lee, W. S., Jo, J. H., Son, K. J.. and Kim, J. J., "System Concept for the Robotic Lunar Landing Mission," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2017, pp. 356-357.
  3. Hawkins, A. M., Constrained Trajectory Optimization of a Soft Lunar Landing from a Parking Orbit, Massachusetts Institute of Technology, M. S. Thesis, 2005
  4. Sachan, K., and Padhi, R., "Fuel-optimal G-MPSP Guidance for Powered Descent Phase of Soft Lunar Landing," Proceeding of the IEEE Conference on Control Application Conference, 2015, pp. 924-929.
  5. Park, B. G., Lee, C. H., Sang, D. G., Kim T. H., and Tahk, M. J., "Study of Trajectory Optimization for Lunar Landing," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2008, pp. 1484-1488.
  6. Park, B. G., Sang, D. G., and Tahk, M. J., "Trajectory Optimization of a Soft Lunar Landing Considering a Lander Attitude," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2009, pp. 722-725.
  7. Jo, S. J., Min, C. O., Lee, D. W. and Cho, K. R., "Optimal Trajectory Design of Descent/Ascent phase for a Lunar Lander with Considerable Sub-Phase," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 12, 2010, pp. 1184-1194. https://doi.org/10.5139/JKSAS.2010.38.12.1184
  8. Bryson, A. E., Applied Optimal Control : Optimization, Estimation and Control, CRC Press, 1975.
  9. Patterson, M. A., and Rao, A. V., "GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problem Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming," Journal of the ACM Transactions on Mathematical Software, Vol. 41, No. 1, 2014, pp. 1-37.
  10. Patterson, M. A., and Rao, A. V., GPOPS-II: A General-Purpose MATLAB Software for Solving Multiple-Phase Optimal Control Problems, User Guide 2.3, 2016.