DOI QR코드

DOI QR Code

UH-1H 로터 블레이드의 제자리 비행 시 투과면을 이용한 원방 소음 해석

Aerodynamic Noise Analysis Using the Permeable Surface for UH-1H Rotor Blade in Hovering Flight Condition

  • Kim, Ki Ro (Department of Aerospace Information Engineering, Konkuk University) ;
  • Park, Min Jun (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Soo Hyung (Rotary-wing Aircraft Research & Development Division, Korea Aerospace Industries) ;
  • Lee, Duck Joo (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Nam Eun (Rotary-wing Aircraft Research & Development Division, Korea Aerospace Industries) ;
  • Im, Dong Kyun (Rotary-wing Aircraft Research & Development Division, Korea Aerospace Industries)
  • 투고 : 2017.11.29
  • 심사 : 2018.03.19
  • 발행 : 2018.05.01

초록

본 연구에서는 투과면을 이용하는 음향상사법으로 제자리 비행하는 UH-1H 로터 블레이드 주위의 원방 소음을 예측하였다. 두께 소음과 하중 소음, 그리고 충격파 및 끝단 후류 등에 의해 발생하는 유동 소음을 예측하기 위해 블레이드 표면을 포함하는 투과면을 구성하였다. 3차원 압축성 Euler 방정식 및 Navier-Stokes 방정식을 적용하여 공력 해석을 수행하고 비교하였다. 투과면의 위치에 따라 High Speed Impulsive 소음을 예측 및 검증하였다. 블레이드 끝단에서 발생하는 충격파에 의한 소음원이 지배적인 요소임을 확인하였으며, 충격파를 온전히 포함하도록 투과면을 구성하는 것이 중요함을 보였다.

The aerodynamic far-field noise was computed by an acoustic analogy code using the permeable surface for the UH-1H rotor blade in hover. The permeable surface surrounding the blade was constructed to include the thickness noise, the loading noise, and the flow noise generated from the shock waves and the tip vortices. The computation was performed with compressible three-dimensional Euler's equations and Navier-Stokes equations. The high speed impulsive noise was predicted and validated according to the permeable surface locations. It is confirmed that the noise source caused by shock waves generated on the blade surface is a dominant factor in the far-field noise prediction.

키워드

참고문헌

  1. Ramachandran, K., Tung, C., and Caradonna, F. X., "Rotor hover performance prediction using a free-wake, computational fluid dynamics method," Journal of Aircraft, Vol. 26, No. 12, 1989, pp. 1105-1110. https://doi.org/10.2514/3.45887
  2. Lishman, G. J., "Principles of helicopter aerodynamics," Cambridge university press.
  3. Ahmad, J., and Duque, E. P. N., "Helicopter rotor blade computation in unsteady flows using moving overset grids," Journal of Aircraft, Vol. 33, No. 1, 1996, pp. 54-60. https://doi.org/10.2514/3.46902
  4. Kim, J. W., Park, S. H., Yu, Y. H., Kim, Y. J., and Kwon, J. H., "Verification of Hovering Rotor Analysis Code Using Overlapped Grid," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 8, 2008, pp. 719-727. https://doi.org/10.5139/JKSAS.2008.36.8.719
  5. Kim, J. W., Park S. H., and Yu Y. H.. "Euler and Navier-Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver," 19th AIAA CFD Conference. 2009.
  6. Michael, J., "On sound generated aerodynamically. II. Turbulence as a source of sound," Lighthill, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1954, pp. 1-32.
  7. Williams, J. F. and David L. H., "Sound generation by turbulence and surfaces in arbitrary motion," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 264, No. 1151, 1969, pp. 321-342. https://doi.org/10.1098/rsta.1969.0031
  8. Farassat, F., "Quadrupole source in prediction of the noise of rotating blades-A new source description," American Institute of Aeronautics and stronautics Conference, 1987.
  9. Di Francescantonio, P., "A new boundary integral formulation for the prediction of sound radiation," Journal of Sound and Vibration, Vol. 202, No. 4, 1997, pp. 491-509. https://doi.org/10.1006/jsvi.1996.0843
  10. Lyrintzis, A. S., Xue, Y., and Anastasios S. "The use of Kirchhoff's method in computational aeroacoustics," Journal of Fluids Engineering, Vol. 116, No. 4, 1994, pp.665-676. https://doi.org/10.1115/1.2911834
  11. Aoyama, T., Kawachi, K., Saito, S., and Kamio, J., "Unsteady analysis of transonic helicopter rotor noise," 19th European Rotorcraft Forum, 1993
  12. Brentner, K. S., and Farassat, F., "Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces," AIAA journal, Vol. 36, No. 8, 1998, pp. 1379-1386. https://doi.org/10.2514/2.558
  13. Im, D. K., Wie, S. Y., Kim, E., Kwon, J. H., Lee, D. J., Park, S. H., Chung, K. H., and Kim, S. B., "Unsteady Aerodynamic Analysis for Helicopter Rotor in Hovering and Forward Flight Using Overlapped Grid," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 3, 2009, pp. 215-223. https://doi.org/10.5139/JKSAS.2009.37.3.215
  14. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of computational physics, Vol. 2, No. 43, 1981, pp. 357-372.
  15. Kim, K. H., and Kim, C., "Accurate, Efficient and Monotonic Numerical methods for Multi-dimensional Compressible Flows Part II: Multi-dimensional Limiting Process," Journal of Computational Physics, Vol. 208, No. 2, 2005, pp. 570-615. https://doi.org/10.1016/j.jcp.2005.02.022
  16. Park, S. H., and Kwon. J. H., "Implementation of k-w Turbulence Models in an Implicit Multigrid Method," AIAA journal, Vol. 7, No. 42, 2004, pp. 1348-1357.
  17. Jiang, G. S., and Shu, C. W., "Efficient implementation of weighted ENO schemes," Journal of Computational Physics, Vol. 126, No. 1, 1996, pp. 202-228. https://doi.org/10.1006/jcph.1996.0130
  18. Thivet, F., Knight, D. D., Zheltovodov, A. A., and Maksimov, A. I., "Insights in Turbulence Modeling for Crossing-Shock-Wave/ Boundary-Layer Interactions," AIAA journal, Vol. 39, No. 6, 2001, pp. 985-995. https://doi.org/10.2514/2.1417
  19. Farassat, F., and George P. S., "The prediction of helicopter rotor discrete frequency noise," 38th American Helicopter Society Annual Forum, Proceedings. (A82-40505 20-01), 1982, pp. 497-507.
  20. Morino, L., Gennaretti, M., Lemma, U., and Salvatore, F., "Aerodynamics and aeroacoustics of wings and rotors via BEM-unsteady, transonic, and viscous effects," Computational Mechanics, Vol. 21, No. 4, 1998, pp. 265-275. https://doi.org/10.1007/s004660050302
  21. Baeder, J. D., Judith M. G., and Yu, Y. H., "A computational study of the aeroacoustics of rotors in hover," Journal of the American Helicopter Society, Vol. 42, No. 1, 1997, pp. 39-53. https://doi.org/10.4050/JAHS.42.39
  22. Purcell T. W., "CFD and transonic helicopter sound," 14th European Rotorcraft Forum, 1988, pp. 17.