DOI QR코드

DOI QR Code

Association between ITGB2 Genetic Polymorphisms and Tuberculosis

ITGB2 유전자 다형성과 결핵 사이의 연관성 연구

  • Jin, Hyun-Seok (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Lee, Sang-In (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Park, Sangjung (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
  • 진현석 (호서대학교 생명보건대학 임상병리학과) ;
  • 이상인 (호서대학교 생명보건대학 임상병리학과) ;
  • 박상정 (호서대학교 생명보건대학 임상병리학과)
  • Received : 2018.05.01
  • Accepted : 2018.05.22
  • Published : 2018.06.30

Abstract

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB), but the genes associated with the host immune system can be attributed to the development of TB. The ITGB2 gene encodes the integrin beta 2 chain CD18 protein and is present on chromosome 21. The integrin beta 2 chain is an integrin expressed in leukocytes and plays a very important role in leukocyte maturation and attachment. ITGB2 plays an important role in the phagocytosis of MTB and the aggregation of leukocytes in MTB infections. This study examined the genetic polymorphisms of the ITGB2 gene between the TB case and normal control using Korean genomic and epidemiologic data. As a result, a statistically significant correlation was confirmed in 10 SNPs. The most significant SNP was rs113421921 (OR=0.69, CI: 0.53~0.90, $P=5.8{\times}10^{-3}$). In addition, rs173098, one of the significant 10 SNPs, is possibly located in a binding motif with the transcription factor cofactor p300, and can affect ITGB2 gene expression. These findings suggest that the pathogenesis of TB may be influenced by a range of genetic factors related to the immune function of the host, e.g., the reactions associated with the recruitment and attachment of leukocytes. The results of this study could be used to predict the infection control for tuberculosis in a patient-tailored manner.

결핵은 본질적으로 MTB에 의해 발생하는 감염성 질환이지만 발병의 과정에는 숙주의 면역계와 연관성 있는 하는 유전자가 관여한다. ITGB2 유전자는 인테그린 beta 2 chain인 CD18 단백질을 암호화 하고 있는 유전자로 염색체 21번에 존재하고 있다. 인테그린 beat 2 chain은 백혈구에서 발현하는 인테그린으로 백혈구의 성숙 및 부착에 매우 중요한 역할을 수행하는 단백질이다. ITGB2는 결핵 발병에서 MTB의 탐식과 백혈구의 집합에도 중요한 역할을 수행한다고 알려졌다. 따라서 이번 연구는 한국인의 유전체 데이터를 활용하여 결핵 발생 환자들과 정상 대조군 사이에서 ITGB2의 유전적 다형성의 빈도에 통계적으로 유의한 차이가 존재하는지를 알아보고자 하였다. 그 결과 10개의 SNP에서 유의한 상관관계를 확인할 수 있었다. 가장 유의성 있는 SNP는 rs113421921 였다 (OR=0.69, CI: 0.53~0.90, $P=5.8{\times}10^{-3}$). 또한 rs173098의 경우는 전사 보조인자인 p300이 결합할 가능성이 있는 염기서열이 존재하여 유전적 다형성에 따라 ITGB2 유전자 발현에 영향을 미칠 수 있음을 확인할 수 있었다. 이러한 결과는 결핵의 발병 기전이 백혈구 집합이나 부착과 같은 숙주의 면역 기능과 관련된 다양한 유전적 요인에 의해 영향을 받을 수 있음을 시사한다. 이 연구결과는 결핵의 발병에 숙주 면역계의 유전자들이 영향을 줄 수 있다고 볼 수 있다. 이러한 결과들을 통해 MTB 감염에 대해 각 사람들 별로 감염의 진행과정과 결과에 차이를 가져다 주는 유전적 배경에 대한 이해에 기반을 제공할 것으로 기대한다.

Keywords

References

  1. Moller M, Hoal EG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb). 2010;90:71-83. https://doi.org/10.1016/j.tube.2010.02.002.
  2. Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis. 1978;117:621-624.
  3. van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT. Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med. 2007;176:1281-1288. https://doi.org/10.1164/rccm.200703-435OC.
  4. Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS, et al. Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun. 2004;5:63-67. https://doi.org/10.1038/sj.gene.6364031.
  5. Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J, et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun. 2009;10:77-83. https://doi.org/10.1038/gene.2008.81.
  6. Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J, et al. Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet. 2012;57:363-367. https://doi.org/10.1038/jhg.2012.35.
  7. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037-1050.
  8. Schittenhelm L, Hilkens CM, Morrison VL. beta2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front Immunol. 2017;8:1866. https://doi.org/10.3389/fimmu.2017.01866.
  9. Schlesinger LS, Azad AK, Torrelles JB, Esteban R, Isabelle V, Vojo D. Determinants of phagocytosis, phagosome biogenesis and autophagy for Mycobacterium tuberculosis: Kaufmann HE, Rubin E, Britton WJ, van Helden P, editors. Handbook of tuberculosis. 1st ed. Hoboken: Wiley-Blackwell; 2017. P1-22.
  10. Roberts LL, Robinson CM. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology. 2014;141:39-51. https://doi.org/10.1111/imm.12164.
  11. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527-534. https://doi.org/10.1038/ng.357.
  12. Jin HS, Park S. Association of the CD226 genetic polymorphisms with risk of tuberculosis. Biomed Sci Letters. 2017;23:89-95. https://doi.org/10.15616/BSL.2017.23.2.89.
  13. Mould AP, Humphries MJ. Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr Opin Cell Biol. 2004;16:544-551. https://doi.org/10.1016/j.ceb.2004.07.003.
  14. von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U.S.A. 1991;88:7538-7542. https://doi.org/10.1073/pnas.88.17.7538
  15. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82-86. https://doi.org/10.1038/25764.
  16. Chung KJ, Mitroulis I, Wiessner JR, Zheng YY, Siegert G, Sperandio M, et al. A novel pathway of rapid TLR-triggered activation of integrin-dependent leukocyte adhesion that requires Rap1 GTPase. Mol Biol Cell. 2014;25:2948-2955. https://doi.org/10.1091/mbc.E14-04-0867.
  17. Roberts LL, Robinson CM. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology. 2014;141:39-51. https://doi.org/10.1111/imm.12164.
  18. Johnson CM, Cooper AM, Frank AA, Orme IM. Adequate expression of protective immunity in the absence of granuloma formation in Mycobacterium tuberculosis-infected mice with a disruption in the intracellular adhesion molecule 1 gene. Infect Immun. 1998;66:1666-1670.
  19. Ghosh S, Saxena RK. Early effect of Mycobacterium tuberculosis infection on Mac-1 and ICAM-1 expression on mouse peritoneal macrophages. Exp Mol Med. 2004:36:387-395. https://doi.org/10.1038/emm.2004.51.
  20. Velasco-Velazquez MA, Barrera D, Gonzalez-Arenas A, Rosales C, Agramonte-Hevia J. Macrophage--Mycobacterium tuberculosis interactions: role of complement receptor 3. Microb Pathog. 2003;35:125-131. https://doi.org/10.1016/S0882-4010(03)00099-8
  21. Zaffran Y, Zhang L, Ellner JJ. Role of CR4 in Mycobacterium tuberculosis-human macrophages binding and signal transduction in the absence of serum. Infect Immun. 1998;66:4541-4544.
  22. Suhair H, Amos E. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250:50-55. https://doi.org/10.1111/j.1749-6632.2011.06389.x.
  23. Kim GT, Sull JW, Jee SH. Effects of TLR4 variants on fasting glucose levels in a Korean population. Korean J Clin Lab Sci. 2017;49:345-349. https://doi.org/10.15324/kjcls.2017.49.4.345.
  24. Sobota RS, Stein CM, Kodaman N, Scheinfeldt LB, Maro I, Wieland-Alter W, et al. A Locus at 5q33.3 confers resistance to tuberculosis in highly susceptible individuals. Am J Hum Genet. 2016;98:514-524. https://doi.org/10.1016/j.ajhg.2016.01.015.
  25. Omae Y, Toyo-Oka L, Yanai H, Nedsuwan S, Wattanapokayakit S, Satproedprai N, et al. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet. 2017;62:1015-1022. https://doi.org/10.1038/jhg.2017.82.
  26. Esterhuyse MM, Weiner J 3rd, Caron E, Loxton AG, Iannaccone M, Wagman C, et al. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. MBio. 2015;6:e01187-15. https://doi.org/10.1128/mBio.01187-15.