DOI QR코드

DOI QR Code

Cytotoxic Triterpenoids from the Fruits of Ligustrum japonicum

  • Thi Ngo, Quynh-Mai (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Cao, Thao Quyen (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Woo, Mi Hee (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Min, Byung Sun (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Weon, Kwon-Yeon (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
  • 투고 : 2018.01.16
  • 심사 : 2018.01.29
  • 발행 : 2018.06.30

초록

Medicinal plants are potential sources of anticancer agents screening. A large number of phytochemicals, including triterpenoids, have been reported to have significant cytotoxic effects on cancer cells. From the fruits of Ligustrum japonicum Thunb., thirteen triterpenoids (1 - 13) were isolated and evaluated for their cytotoxic activity against Hela and HL-60 cells. As results, 8 (oleanolic acid) showed significant effects on Hela with $IC_{50}$ values of $5.5{\mu}M$, and moderate effects on HL-60 cells with $IC_{50}$ values of $55.9{\mu}M$. Meanwhile, 10 (oleanderic acid) and 11 ($3{\beta}$-acetoxy-urs-12-en-28-oic acid) exhibited moderate inhibitory effects on Hela with $IC_{50}$ value of 55.0 and $68.8{\mu}M$, respectively. Moreover, 10 showed cytotoxic effect on HL-60 cell line with $IC_{50}$ value of $63.9{\mu}M$. To our knowledge, this is the first report that oleanderic acid was isolated from L. japonicum and investigated in cytotoxic effects on Hela and HL-60 cells.

키워드

참고문헌

  1. Jensen, S. R.; Franzyk, H.; Wallander, E. Phytochemistry 2002, 60, 213-231. https://doi.org/10.1016/S0031-9422(02)00102-4
  2. Ngo, Q. -M.T.; Lee, H. S.; Nguyen, V. T.; Kim, J. A.; Woo, M. H.; Min, B. S. Phytochemistry 2017, 141, 147-155. https://doi.org/10.1016/j.phytochem.2017.06.001
  3. Chudzik, M.; Korzonek-Szlacheta, I.; Krol, W. Molecules 2015, 20, 1610-1625. https://doi.org/10.3390/molecules20011610
  4. Taher, M.; Aminuddin, A.; Susanti, D.; Aminudin, N. I.; On, S.; Ahmad, F.; Hamidon, H. Nat. Prod. Sci. 2016, 22, 122-128. https://doi.org/10.20307/nps.2016.22.2.122
  5. Tanaka, R.; Matsuda, M.; Matsunaga, S. Phytochemistry 1987, 26, 3365-3366. https://doi.org/10.1016/S0031-9422(00)82513-3
  6. Pakhathirathien, C.; Karalai, C.; Ponglimanont, C.; Subhadhirasakul, S.; Chantrapromma, K. J. Nat. Prod. 2005, 68, 1787-1789. https://doi.org/10.1021/np0502793
  7. Chakrabartty, T.; Poddar, G.; Pyrek, J. S. Phytochemistry 1982, 21, 1814-1816. https://doi.org/10.1016/S0031-9422(82)85077-2
  8. Fuchino, H.; Satoh, T.; Tanaka, N. Chem. Pharm. Bull. 1996, 44, 1748-1753. https://doi.org/10.1248/cpb.44.1748
  9. Nomura, M.; Tokoroyama, T.; Kubota, T. Phytochemistry 1981, 20, 1097-1104. https://doi.org/10.1016/0031-9422(81)83035-X
  10. Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Magn. Reson. Chem. 2003, 41, 636-638. https://doi.org/10.1002/mrc.1214
  11. Al Musayeib, N. M.; Mothana, R. A.; Gamal, A. A. E.; Al-Massarani, S. M.; Maes, L. Molecules 2013, 18, 9207-9218. https://doi.org/10.3390/molecules18089207
  12. Fu, L.; Zhang, S.; Li, N.; Wang, J.; Zhao, M.; Sakai, J.; Hasegawa, T.; Mitsui, T.; Kataoka, T.; Oka, S.; Kiuchi, M.; Hirose, K.; Ando, M. J. Nat. Prod. 2005, 68, 198-206. https://doi.org/10.1021/np040072u
  13. Batra, A.; Sastry, V. G. Pteridines 2013, 24, 191-199.
  14. Hota, R. K.; Bapuji, M. Phytochemistry 1994, 35, 1073-1074. https://doi.org/10.1016/S0031-9422(00)90675-7
  15. Liao, C. R.; Kuo, Y. H.; Ho, Y. L.; Wang, C. Y.; Yang, C. S.; Lin, C. W.; Chang, Y. S. Molecules 2014, 19, 9515-9534. https://doi.org/10.3390/molecules19079515
  16. Butruille, D.; Dominguez, X. A. Tetrahedron Lett. 1974, 15, 639-642. https://doi.org/10.1016/S0040-4039(01)82292-9
  17. Rouf, A. S. S.; Ozaki, Y.; Rashid, M. A.; Rui, J. Phytochemistry 2001, 56, 815-818. https://doi.org/10.1016/S0031-9422(01)00028-0
  18. Zhu, Y. Y.; Huang, H. Y.; Wu, Y. L. Mol. Med. Rep. 2015, 12, 5012-5018. https://doi.org/10.3892/mmr.2015.4033
  19. Akihisa, T.; Kamo, S.; Uchiyama, T.; Akazawa, H.; Banno, N.; Taguchi, Y.; Yasukawa, K. J. Nat. Med. 2006, 60, 331-333. https://doi.org/10.1007/s11418-006-0015-9
  20. Chiang, Y. M.; Chang, J. Y.; Kuo, C. C.; Chang, C. Y.; Kuo, Y. H. Phytochemistry 2005, 66, 495-501. https://doi.org/10.1016/j.phytochem.2004.12.026

피인용 문헌

  1. Evaluation of MMP Inhibitors Isolated from Ligustrum japonicum Fructus vol.24, pp.3, 2018, https://doi.org/10.3390/molecules24030604
  2. Betulinic Acid Suppresses Ovarian Cancer Cell Proliferation through Induction of Apoptosis vol.9, pp.7, 2018, https://doi.org/10.3390/biom9070257
  3. Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom Gymnopilus junonius and their cytotoxicity vol.43, pp.2, 2018, https://doi.org/10.1007/s12272-020-01213-6
  4. Absolute Configuration and Corrected NMR Assignment of 17-Hydroxycyclooctatin, a Fused 5-8-5 Tricyclic Diterpene vol.83, pp.2, 2018, https://doi.org/10.1021/acs.jnatprod.9b00837
  5. Calvatianone, a Sterol Possessing a 6/5/6/5-Fused Ring System with a Contracted Tetrahydrofuran B-Ring, from the Fruiting Bodies of Calvatia nipponica vol.83, pp.9, 2018, https://doi.org/10.1021/acs.jnatprod.0c00673
  6. Ligustrum japonicum Thunb. Fruits Exert Antiosteoporotic Properties in Bone Marrow-Derived Mesenchymal Stromal Cells via Regulation of Adipocyte and Osteoblast Differentiation vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8851884
  7. Bioactivity-based analysis and chemical characterization of cytotoxic compounds from a poisonous mushroom, Amanita spissacea, in human lung cancer cells in vitro vol.35, pp.4, 2018, https://doi.org/10.1080/14786419.2019.1586699