DOI QR코드

DOI QR Code

계면활성제를 이용하여 anatase TiO2 나노 입자와 결합된 rutile TiO2 분말의 광촉매 특성

Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant

  • 변종민 (서울과학기술대학교 신소재공학과) ;
  • 박천웅 (한양대학교 신소재공학과) ;
  • 김영인 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Byun, Jong Min (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Chun Woong (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young In (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 투고 : 2018.06.11
  • 심사 : 2018.06.19
  • 발행 : 2018.06.28

초록

The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of $TiO_2$, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile $TiO_2$ because these coupled $TiO_2$ powders can retain the benefits of $TiO_2$, one of the best photocatalysts. In this study, anatase $TiO_2$ nanoparticles are synthesized and coupled on the surface of rutile $TiO_2$ powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase $TiO_2$ nanoparticles and disperse anatase $TiO_2$ nanoparticles uniformly on the surface of rutile $TiO_2$ powders. Rutile $TiO_2$ powders coupled with anatase $TiO_2$ nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled $TiO_2$ powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.

키워드

참고문헌

  1. J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. Mckinney and M. Rouse: Appl. Catal. B, 17 (1998) 25. https://doi.org/10.1016/S0926-3373(97)00101-X
  2. Y. Ohko, I. Ando, C. Nia, T. Tatsuma, T. Yamamura, T. Nakashima and Y. Kubota: Environ. Sci. Technol., 35 (2001) 2365. https://doi.org/10.1021/es001757t
  3. Z. Li, S. Cong and Y. Xu: ACS Catal., 4 (2014) 3273. https://doi.org/10.1021/cs500785z
  4. D. H. Lee, J. R. Park, C. G. Lee, K. S. Park and H. M. Kim: J. Korean Powder Metall. Inst., 23 (2016) 353. https://doi.org/10.4150/KPMI.2016.23.5.353
  5. I. C. Kang and I. C. Yeo: J. Korean Powder Metall. Inst., 20 (2013) 474. https://doi.org/10.4150/KPMI.2013.20.6.474
  6. J. Y. Kim, J. M. Byun, J. W. Kim and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 119. https://doi.org/10.4150/KPMI.2014.21.2.119
  7. Y. Hwangbo and Y. I. Lee: J. Korean Powder Metall. Inst., 23 (2016) 307. https://doi.org/10.4150/KPMI.2016.23.4.307
  8. I. C. Yeo and I. C. Kang: J. Korean Powder Metall. Inst., 23 (2016) 458.
  9. W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai: J. Am. Chem. Soc., 126 (2004) 4782. https://doi.org/10.1021/ja0396753
  10. P. Viswanalhamurthi, N. Bhauarai, C. K. Kim, H. Y. Kim and D. R. Lee: Inorg. Chem. Commun., 7 (2004) 679. https://doi.org/10.1016/j.inoche.2004.03.013
  11. D. Li and Y. Xia: Nano Lett., 3 (2003) 555. https://doi.org/10.1021/nl034039o
  12. H. C. Kim and J. K. Han: J. Korean Powder Metall. Inst., 23 (2016) 33. https://doi.org/10.4150/KPMI.2016.23.1.33
  13. A. Mills and S. Hunte: J. Photochem. Photobiol. A Chem., 108 (1997) 1. https://doi.org/10.1016/S1010-6030(97)00118-4
  14. R. Vogel, P. Hoyer and H. Weller: J. Phys. Chem., 98 (1994) 3183. https://doi.org/10.1021/j100063a022
  15. T. Kawahara, Y. Ozawa, M. Iwasaki, H. Tada and S. Ito: J. Colloid Interface Sci., 267 (2003) 377. https://doi.org/10.1016/S0021-9797(03)00755-0
  16. H. Li, W. Zhang and W. Pan: J. Am. Ceram. Soc., 94 (2011) 3184. https://doi.org/10.1111/j.1551-2916.2011.04748.x
  17. O. Carp, C. L. Huisman and A. Reller: Prog. in Solid State Chem., 32 (2004) 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  18. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes: Sol. Energy Mater. Sol. Cells, 90 (2006) 2011. https://doi.org/10.1016/j.solmat.2006.04.007
  19. M. M. Joshi, N. K. Labhsetwar, P. A. Mangrulkar, S. N. Tijiare, S. P. Kamble and S. S. Rayalu: Appl. Catal. A, 357 (2009) 26. https://doi.org/10.1016/j.apcata.2008.12.030
  20. R. Vogel, P. Hoyer and H. Weller: J. Phys. Chem., 98 (1994) 3183. https://doi.org/10.1021/j100063a022
  21. T. H. Wang, A. M. Navarrete-Lopez, S. Li and D. A. Dixon: J. Phys. Chem. A, 114 (2010) 7561. https://doi.org/10.1021/jp102020h
  22. D. Scanlon, C. Dunnill, J. Buckeridge, S. Shevlin, A. Logsdail, S.Woodley, R. Catlow, M. Powell, R. Palgrave, I. Parkin, G.Watson, T. Keal, P. Sherwood, A. Walsh and A. Sokol: Nat. Mater., 12 (2013) 798. https://doi.org/10.1038/nmat3697