DOI QR코드

DOI QR Code

Development of the Aircraft CO2 Measurement Data Assimilation System to Improve the Estimation of Surface CO2 Fluxes Using an Inverse Modeling System

인버스 모델링을 이용한 지표면 이산화탄소 플럭스 추정 향상을 위한 항공기 관측 이산화탄소 자료동화 체계 개발

  • Kim, Hyunjung (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Hyun Mee (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Cho, Minkwang (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Park, Jun (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Dae-Hui (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University)
  • 김현정 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 김현미 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 조민광 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 박준 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실) ;
  • 김대휘 (연세대학교 대기과학과, 대기예측성 및 자료동화 연구실)
  • Received : 2018.01.11
  • Accepted : 2018.04.11
  • Published : 2018.06.30

Abstract

In order to monitor greenhouse gases including $CO_2$, various types of surface-, aircraft-, and satellite-based measurement projects have been conducted. These data help understand the variations of greenhouse gases and are used in atmospheric inverse modeling systems to simulate surface fluxes for greenhouse gases. CarbonTracker is a system for estimating surface $CO_2$ flux, using an atmospheric inverse modeling method, based on only surface observation data. Because of the insufficient surface observation data available for accurate estimation of the surface $CO_2$ flux, additional observations would be required. In this study, a system that assimilates aircraft $CO_2$ measurement data in CarbonTracker (CT2013B) is developed, and the estimated results from this data assimilation system are evaluated. The aircraft $CO_2$ measurement data used are obtained from the Comprehensive Observation Network for Trace gases by the Airliner (CONTRAIL) project. The developed system includes the preprocessor of the raw observation data, the observation operator, and the ensemble Kalman filter (EnKF) data assimilation process. After preprocessing the raw data, the modeled value corresponding spatially and temporally to each observation is calculated using the observation operator. These modeled values and observations are then averaged in space and time, and used in the EnKF data assimilation process. The modeled values are much closer to the observations and show smaller biases and root-mean-square errors, after the assimilation of the aircraft $CO_2$ measurement data. This system could also be used to assimilate other aircraft $CO_2$ measurement data in CarbonTracker.

Keywords

References

  1. Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253-264. https://doi.org/10.1109/TGRS.2002.808356
  2. Brenninkmeijer, C. A. M., and Coauthors, 2007: Civil aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmos. Chem. Phys., 7, 4953-4976, doi:10.5194/acp-7-4953-2007.
  3. Chevallier, F., and Coauthors, 2010: $CO_2$ surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res., 115, D21307, doi:10.1029/2010JD013887.
  4. Crevoisier, C., A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, 2009: First year of upper tropospheric integrated content of $CO_2$ from IASI hyperspectral infrared observations. Atmos. Chem. Phys., 9, 4797-4810. https://doi.org/10.5194/acp-9-4797-2009
  5. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162. https://doi.org/10.1029/94JC00572
  6. Feng, L., P. I. Palmer, H. Bosch, and S. Dance, 2009: Estimating surface $CO_2$ fluxes from space-borne $CO_2$ dry air mole fraction observations using an ensemble Kalman filter. Atmos. Chem. Phys., 9, 2619-2633. https://doi.org/10.5194/acp-9-2619-2009
  7. Feng, L., and Coauthors, 2011: Evaluating a 3-D transport model of atmospheric $CO_2$ using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys., 11, 2789-2803, doi:10.5194/acp-11-2789-2011.
  8. Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of $CO_2$ sources and sinks using atmospheric transport models. Nature, 415, 626-630. https://doi.org/10.1038/415626a
  9. Houweling, S., and Coauthors, 2015: An intercomparison of inverse models for estimating sources and sinks of $CO_2$ using GOSAT measurements. J. Geophys. Res. Atmos., 120, 5253-5266, doi:10.1002/2014JD022962.
  10. Jiang, F., H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa, 2014: Carbon balance of China constrained by CONTRAIL aircraft $CO_2$ measurements. Atmos. Chem. Phys., 14, 10133-10144. https://doi.org/10.5194/acp-14-10133-2014
  11. Kim, H., H. M. Kim, J. Kim, and C.-H. Cho, 2016: A comparison of the atmospheric $CO_2$ concentrations obtained by an inverse modeling system and passenger aircraft based measurement. Atmosphere, 26, 387-400, doi:10.14191/Atmos.2016.26.3.387 (in Korean with English abstract).
  12. Kim, H., H. M. Kim, J. Kim, T. Machida, A. R. Jacobson, C.-H. Cho, and T.-Y. Goo, 2017a: Effect of assimilating aircraft $CO_2$ observations in CarbonTracker, Proceedings of 2017 10th International Carbon Dioxide Conference, 21th - 25th August, 2017, Interlaken, Switzerland.
  13. Kim, H., H. M. Kim, J. Kim, and C.-H. Cho, 2018: Effect of data assimilation parameters on the optimized surface $CO_2$ flux in Asia. Asia-Pac. J. of Atmos. Sci., 54, 1-17, doi:10.1007/s13143-017-0049-9.
  14. Kim, J., H. M. Kim, and C.-H. Cho, 2012: Application of Carbon Tracking System based on ensemble Kalman filter on the diagnosis of Carbon Cycle in Asia. Atmosphere, 22, 415-427, doi:10.14191/Atmos.2012.22.4.415 (in Korean with English abstract).
  15. Kim, J., H. M. Kim, and C.-H. Cho, 2014a: The effect of optimization and the nesting domain on carbon flux analyses in Asia using a carbon tracking system based on the ensemble Kalman filter. Asia-Pac. J. of Atmos. Sci., 50, 327-344, doi:10.1007/s13143-014-0020-y.
  16. Kim, J., H. M. Kim, and C.-H. Cho, 2014b: Influence of $CO_2$ observations on the optimized $CO_2$ flux in an ensemble Kalman filter. Atmos. Chem. Phys., 14, 13515- 13530, doi:10.5194/acp-14-13515-2014.
  17. Kim, J., H. M. Kim, C.-H. Cho, K.-O. Boo, A. R. Jacobson, M. Sasakawa, T. Machida, M. Arshinov, and N. Fedoseev, 2017b: Impact of Siberian observations on the optimization of surface $CO_2$ flux, Atmos. Chem. Phys., 17, 2881-2899, doi:10.5194/acp-17-2881-2017.
  18. Kulawik, S., and Coauthors, 2010: Characterization of tropospheric emission spectrometer (TES) $CO_2$ for carbon cycle science. Atmos. Chem. Phys., 10, 5601-5623, doi:10.5194/acp-10-5601-2010.
  19. Kulawik, S., and Coauthors, 2016: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
  20. Machida, T., and Coauthors, 2008: Worldwide measurements of atmospheric $CO_2$ and other trace gas species using commercial airlines. J. Atmos. Oceanic Technol., 25, 1744-1754, doi:10.1175/2008JTECHA1082.1.
  21. Machida, T., Y. Tohjima, K. Katsumata, and H. Mukai, 2011: A new $CO_2$ calibration scale based on gravimetric onestep dilution cylinders in National Institute for Environmental Studies - NIES 09 $CO_2$ Scale, Proc. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, GAW Rep. 194, Geneva, Switzerland, World Meteorol. Organ., 114-119.
  22. Matsueda, H., T. Machida, Y. Sawa, Y. Nakagawa, K. Hirotani, H. Ikeda, N. Kondo, and K. Goto, 2008: Evaluation of atmospheric $CO_2$ measurements from new flask air sampling of JAL airliner observations. Pap. Meteorol. Geophys., 59, 1-17, doi:10.2467/mripapers.59.1.
  23. Niwa, Y., T. Machida, Y. Sawa, H. Matsueda, T. J. Schuck, C. A. M. Brenninkmeijer, R. Imasu, and M. Satoh, 2012: Imposing strong constraints on tropical terrestrial $CO_2$ fluxes using passenger aircraft based measurements. J. Geophys. Res., 117, D11303, doi:10.1029/2012JD01747.
  24. Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans, 2005: An ensemble data assimilation system to estimate $CO_2$ surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157.
  25. Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. U.S.A., 104, 18925-18930. https://doi.org/10.1073/pnas.0708986104
  26. Peters, W., and Coauthors, 2010: Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob. Change Biol., 16, 1317-1337, doi:10.1111/j.1365-2486.2009.02078.x.
  27. Peylin, P., and Coauthors, 2013: Global atmospheric carbon budget: results from an ensemble of atmospheric $CO_2$ inversions. Biogeosciences, 10, 6699-6720, doi:10.5194/bg-10-6699-2013.
  28. Sawa, Y., T. Machida, and H. Matsueda, 2008: Seasonal variations of $CO_2$ near the tropopause observed by commercial aircraft. J. Geophys. Res., 113, D23301, doi:10.1029/2008JD010568.
  29. Stephens, B. B., and Coauthors, 2007: Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric $CO_2$. Science, 316, 1732-1735, doi:10.1126/science.1137004.
  30. United Nations, 2016: Climate Action Now-Summary for Policymakers 2016, United Nations, 47 pp.
  31. Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924. https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
  32. Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, 2009: Global concentrations of $CO_2$ and $CH_4$ retrieved from GOSAT: first preliminary results. SOLA, 5, 160-163. https://doi.org/10.2151/sola.2009-041
  33. Zhang, H. F., and Coauthors, 2014: Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface $CO_2$ observations for the period 2006-2010. Atmos. Chem. Phys., 14, 5807-5824, doi:10.5194/acp-14-5807-2014.