DOI QR코드

DOI QR Code

Draft genome sequence of Streptomyces sp. P3 isolated from potato scab diseased tubers

감자 더뎅이병 이병괴경으로부터 분리한 Streptomyces sp. P3 균주의 유전체 해독

  • Kang, Min Kyu (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Park, Duck Hwan (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
  • 강민규 (강원대학교 생물자원과학부 응용생물학전공) ;
  • 박덕환 (강원대학교 생물자원과학부 응용생물학전공)
  • Received : 2018.03.28
  • Accepted : 2018.05.03
  • Published : 2018.06.30

Abstract

Streptomyces sp. P3 was isolated from potato scab diseased tubers in Pyeongchang, Gangwon-do, Republic of Korea in 2017. Here, we report the draft genome sequences of P3 with 9,851,971 bp size (71.2% GC content) of the chromosome. The genome comprises 8,548 CDS, 18 rRNA and 66 tRNA genes. Although strain P3 did not show pathogenicity both potato tuber assay and radish seedling assay, it possesses tomatinase (tomA) gene among conserved pathogenicity-related genes in well characterized pathogenic Streptomyces. Thus, the genome sequences determined in this study will be useful to understand for pathogenic evolution in Streptomyces species, which already adapted to potato scab pathogens.

Streptomyces sp. P3 균주는 대한민국 강원도 평창의 더뎅이병 이병괴경으로부터 2017년 분리되었다. 이 논문에서는 9,851,971 bp (71.2% G + C 함량)로 구성된 P3 균주의 전체염기서열을 보고한다. 지놈은 8,548개의 코딩서열, 18개의 rRNA 그리고 66개의 tRNA 유전자를 포함하고 있다. 특히 P3 균주는 감자표면과 무종자를 이용한 병원성 검정에서 병원성을 나타내지는 않았지만, 감자 더뎅이병 유발 Streptomyces들이 보유한 병원성 유전자 중 tomA 유전자만이 존재하였다. 따라서 본 논문에 제공되는 전체염기서열은 감자 더뎅이병원세균들의 병원성 획득을 위한 진화단계에서의 이해를 높이기 위한 중요한 단서가 될 것이다.

Keywords

References

  1. Bukhalid, R.A., Takeuchi, T., Labeda, D., and Loria, R. 2002. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the diastatochromogenes cluster. Appl. Environ. Microbiol. 68, 738-744. https://doi.org/10.1128/AEM.68.2.738-744.2002
  2. Huguet-Tapia, J.C., Lefebure, T., Badger, J.H., Guan, D., Pettis, G.S., Stanhope, M.J., and Loria, R. 2016. Genome content and phylogenomics reveal both ancestral and lateral evolutionary pathways in plant-pathogenic Streptomyces species. Appl. Environ. Microbiol. 82, 2146-2155. https://doi.org/10.1128/AEM.03504-15
  3. Joshi, M.V. and Loria, R. 2007. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol. Plant Microbe Interact. 20, 751-758. https://doi.org/10.1094/MPMI-20-7-0751
  4. Kers, J.A., Cameron, K.D., Joshi, M.V., Bukhalid, R.A., Morello, J.E., Wach, M.J., Gibson, D.M., and Loria, R. 2005. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol. Microbiol. 55, 1025-1033.
  5. King, R.R., Lawrence, C.H., Clark, M.C., and Calhoun, L.A. 1989. Isolation and characterization of phtotoxins associated with Streptomyces scabies. J. Chem. Soc. Chem. Commun. 13, 849-850.
  6. Loria, R., Kers, J., and Joshi, M.V. 2006. Evolution of plant pathogenicity in Streptomyces. Annu. Rev. Phytopathol. 44, 469-487. https://doi.org/10.1146/annurev.phyto.44.032905.091147
  7. Nawrocki, E.P. and Eddy, S.R. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935. https://doi.org/10.1093/bioinformatics/btt509
  8. Schattner, P., Brooks, A.N., and Lowe, T.M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, 686-689. https://doi.org/10.1093/nar/gki366