DOI QR코드

DOI QR Code

Effect of antibacterial substances produced by probiotic lactic acid bacteria on histamine formation in rennet curd

렌넷 커드 내 히스타민 생성에 관한 프로바이오틱 유산균이 생산한 항균 물질의 영향

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University) ;
  • Choi, Jae-Suk (Division of Bioindustry, College of Medical and Life Sciences, Silla University)
  • 임은서 (동명대학교 식품영양학과) ;
  • 최재석 (신라대학교 의생명대 바이오산업학부)
  • Received : 2017.12.04
  • Accepted : 2018.02.14
  • Published : 2018.06.30

Abstract

Purpose of the present study was to investigate the factors affecting the production of antibacterial substances and histamine in rennet curd prepared by inoculation of histamine-producing lactic acid bacteria (LAB) and probiotic LAB. Probiotic Lactobacillus sakei PIL52 and Lactobacillus plantarum FIL20 produced strong antimicrobial agents against histamine-producing bacteria Lactobacillus brevis LAS129, Enterococcus faecium SBP12, and Enterococcus faecalis SBP58. The lactic acid and crude bacteriocin produced from the probiotic LAB inhibited histamine-producing bacteria in a concentration-dependent manner. As the number of probiotic LAB inoculated for the production of rennet curd increased, the antibacterial activity against histamine-producing bacteria was elevated due to the increased amount of lactic acid and crude bacteriocin in the sample. The growth of probiotic LAB as well as histamine-producing bacteria was inhibited by addition of 10% NaCl, thus the antibacterial substances and histamine contents in rennet curd were significantly lower than those of the control (P < 0.05). Meanwhile, the histamine content was not significantly increased when the rennet curd prepared by mixing probiotic LAB and histamine-producing bacteria was stored at $25^{\circ}C$ for 5 days. However, the amount of histamine detected in the rennet curd was significantly (P < 0.05) increased because the antibacterial activity of the bacteriocin produced by the probiotic LAB was decreased at $20^{\circ}C$ for 20 days.

본 연구에서는 히스타민을 생성하는 유산균과 이에 항균 활성을 나타내는 프로바이오틱 유산균을 혼합 접종하여 제조한 렌넷 커드 내 항균물질과 히스타민 생산에 영향을 미치는 인자를 조사하였다. 프로바이오틱 유산균인 Lactobacillus plantarum FIL20과 Lactobacillus sakei PIL52는 히스타민 생성균인 Lactobacillus brevis LAS129, Enterococcus faecium SBP12 및 Enterococcus faecalis SBP58에 대해 강력한 항균 물질을 생산하였고, 프로바이오틱균이 생산한 유산과 박테리오신의 항균 활성은 농도의존적이었다. 렌넷 커드 제조를 위해 접종한 프로바이오틱 유산균의 균수가 많을수록 항균 물질 생성량이 증가되어 히스타민 생성균에 대한 항균 활성도 높아졌다. 프로바이오틱 유산균과 히스타민 생성균은 NaCl 10% 첨가에 의해 증식이 억제됨으로써 렌넷 커드 내에 항균 물질과 히스타민의 함량은 대조구보다 유의하게 낮았다(P < 0.05). 한편, 프로바이오틱 유산균과 히스타민 생성균을 혼합하여 제조한 렌넷 커드를 $25^{\circ}C$에서 5일간 저장 했을 때 히스타민의 함량은 유의하게 증가되지 않았으나, $20^{\circ}C$에서 20일간 저장한 경우에는 프로바이오틱 유산균이 생산한 항균 물질의 활성이 감소됨에 따라 렌넷 커드 내에 히스타민의 함량이 유의하게 증가되었다(P < 0.05).

Keywords

References

  1. Aliakbarlu, J., Alizadeh, M., Razavi-Rohani, M., Vahabzade, Z., Saei, S.S., and Agh, N. 2009. Effects of processing factors biogenic amines production in Iranian white brine cheese. Res. J. Biol. Sci. 4, 23-28.
  2. Arnold, S.H. and Brown, W.D. 1978. Histamine toxicity from fish products. Adv. Food Res. 34, 113-154.
  3. Askar, A. and Treptow, H. 1986. Biogenic amine in Lebensmitteln. Ulmer Verlag, Stuttgart, Germany.
  4. Bover-Cid, S. and Holzapfel, W.H. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 52, 33-41.
  5. Bover-Cid, S., Torriani, S., Gatto, V., Tofalo, R., Suzzi, G., and Belletti, N. 2009. Relationships between microbial population dynamics and putrescine and cadaverine accumulation during dry fermented sausage ripening. J. Appl. Microbiol. 106, 1397-1407. https://doi.org/10.1111/j.1365-2672.2008.04108.x
  6. Calzada, J., Olmo, A.D., Picon, A., Gaya, P., and Nunez, M. 2015. Effect of high-pressure on the microbiology, proteolysis, biogenic amines and flavor of cheese made from unpasteurized milk. Food Bioprocess Technol. 8, 319-332. https://doi.org/10.1007/s11947-014-1406-7
  7. Chander, H., Batish, V.K., Babu, S., and Singh, R.S. 2006. Factors affecting amine production by a selected strain of Lactobacillus bulgaricus. J. Food Sci. 54, 940-942.
  8. Chong, C.Y., Abu Bakar, F., Russly, A.R., Jailah, B., and Mahyudin, N.A. 2011. The effects of food processing on biogenic amines formation. Int. Food Res. J. 18, 867-876.
  9. Coelho, M.C., Silva, C.C.G., Ribeiro, S.C., Dapkevicius, M.L.N.E., and Rosa, H.J.D. 2014. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 191, 53-59. https://doi.org/10.1016/j.ijfoodmicro.2014.08.029
  10. Dapkevicius, M.L.N.E., Nout, M.J.R., Rombouts, F.M., Houben, J.H., and Wymenga, W. 2000. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 57, 107-114. https://doi.org/10.1016/S0168-1605(00)00238-5
  11. Doeglas, H.M.G., Huisman, J., and Nater, J.P. 1967. Histamine intoxication after cheese. Lancet 2, 1361-1362.
  12. Eerola, S., Hinkkanen, R., Lindfors, E., and Hirvi, T. 1993. Liquid chromatographic determination of biogenic amines in dry sausages. J. Assoc. Off. Anal. Chem. Int. 75, 575-577.
  13. El-Zahar, K.M. 2014. Biogenic amines and microbiological profile of Egyptian cheeses. Uni. J. Food Nutr. Sci. 2, 18-26.
  14. Fenelon, M.A., Ryan, M.P., Rea, M.C., Guinee, T.P., Ross, R.P., Hill, C., and Harrington, D. 1998. Elevated temperature ripening of reduced fat Cheddar made with or without lacticin 3147 producing starter cultures. J. Dairy Sci. 82, 10-22.
  15. Gardini, F. Martuscelli, M., Caruso, M.C., Galqano, F., Crudele, M.A., Favati, F., Guerzoni, M.E., and Suzzi, G. 2001. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int. J. Food Microbiol. 64, 105-117. https://doi.org/10.1016/S0168-1605(00)00445-1
  16. Guarcello, R., Diviccaro, A., Barbera, M., Giancippoli, E., Settanni, L., Minervini, F., Moschetti, G., and Gobbetti, M. 2015. A survey of the main technology, biochemical and microbiological fatures influencing the concentration of biogenic amines of twenty Apulian and Sicilian (Southern Italy) cheeses. Int. Dairy J. 43, 61-69. https://doi.org/10.1016/j.idairyj.2014.11.007
  17. Hayaloglu, A.A., Guven, M., Fox, P.F., and McSweeney, P.L. 2005. Influence of starter son chemical, biochemical, and sensory changes in Turkish White-brines cheese during ripening. J. Dairy Sci. 88, 3460-3474. https://doi.org/10.3168/jds.S0022-0302(05)73030-7
  18. Herrero-Fresno, A., Martinez, N., Sanchez-Llana, E., Diaz, M., Fernandez, M., Martin, M.C., Ladero, V., and Alvarez, M.A. 2012. Lactobacillus casei strains isolated from cheese reduce biogenic amines accumulation in an experimental model. Int. J. Food Microbiol. 157, 297-304. https://doi.org/10.1016/j.ijfoodmicro.2012.06.002
  19. Hirsch, A., Grinsted, E., Chapman, H.R., and Mattick, A.T.R. 1951. A note on the inhibition of an anerobic sporeformer in Swiss-type cheese by a nisin-producing Streptococcus. J. Dairy Res. 18, 205-206. https://doi.org/10.1017/S0022029900006075
  20. Innocente, N., Biasutti, M., Padovese, M., and Moret, S. 2007. Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract. Food Chem. 101, 1285-1289. https://doi.org/10.1016/j.foodchem.2005.12.026
  21. Joosten, H.M.L.J. 1988a. The biogenic amine contents of Dutch cheese and their toxicological significance. Neth. Milk Diary J. 42, 25-42.
  22. Joosten, H.M.L.J. 1988b. Conditions allowing the formation of biogenic amines in cheese. 3. Factors influencing the amounts formed. Neth. Milk Dairy J. 41, 329-357.
  23. Joosten, H.M.L.J. and Northolt, M.D. 1987. Conditions allowing the formation of biogenic amines in cheese. 2. Decarboxylative properties of some non-starter bacteria. Neth. Milk Dairy J. 41, 259-280.
  24. Joosten, H.M.L.J. and Nunez, M. 1996. Prevention of histamine formation in cheese by bacteriocin-producing lactic acid bacteria. Appl. Environ. Microbiol. 62, 1178-1181.
  25. Kim, N.Y. and Ji, G.E. 2015. Characterization of the production of biogenic amines and gamma-aminobutyric acid in the soybean pastes fermented by Aspergillus oryzae and Lactobacillus brevis. J. Microbiol. Biotechnol. 25, 464-468. https://doi.org/10.4014/jmb.1409.09081
  26. Kim, M.J. and Kim, K.S. 2014. Tyramine production among lactic acid bacteria and other species isolated from kimchi. LTW-Food Sci. Technol. 56, 406-413.
  27. Kim, J.H., Kim, D.H., Ahn, H.J., Park, H.J., and Byun, M.W. 2005. Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control 16, 43-49. https://doi.org/10.1016/j.foodcont.2003.11.004
  28. Lim, E.S. 2016a. Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria. Kor. J. Microbiol. 52, 84-97. https://doi.org/10.7845/kjm.2016.6012
  29. Lim, E.S. 2016b. Effect of the mixed culture of heterofermentative lactic acid bacteria and acid-tolerant yeast on the shelf-life of sourdough. Kor. J. Microbiol. 52, 471-481. https://doi.org/10.7845/kjm.2016.6069
  30. Lim, E.S. and Lee, N.G. 2016. Control of histamine-forming bacteria by probiotic lactic acid bacteria isolated from fish intestine. Kor. J. Microbiol. 52, 352-364. https://doi.org/10.7845/kjm.2016.6041
  31. Linares, D.M., Martin, M., Ladero, V., Alveraz, M.A., and Fernandez, M. 2011. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 51, 691-703. https://doi.org/10.1080/10408398.2011.582813
  32. Mah, J.H., Ahn, J.B., Park, J.H., Sung, H.C., and Hwang, H.J. 2003. Characterization of biogenic amine-producing microorganisms isolated from Myeolchi-Jeot, Korean salted and fermented anchovy. J. Microbiol. Biotechnol. 13, 692-699.
  33. Martuscelli, M., Gardini, F., Torriani, S., Mastrocola, D., Serio, A., Chaves-Lopez, C., Schirone, M., and Suzzi, G. 2005. Production of biogenic amine during the ripening of Pecorino Abruzzese cheese. Int. Dairy J. 15, 571-578. https://doi.org/10.1016/j.idairyj.2004.11.008
  34. Min, J.S., Lee, S.O., Jang, A., Jo, C., and Lee, M. 2007a. Irradiation and organic acid treatment for microbial control and the production of biogenic amines in beef and port. Food Chem. 104, 791-799. https://doi.org/10.1016/j.foodchem.2006.12.030
  35. Min, J.S., Lee, S.O., Jang, A., Jo, C., and Lee, M. 2007b. Control of microorganisms and reduction of biogenic amines in chicken breast and thigh by irradiation and organic acids. Poult. Sci. 86, 2034-2041. https://doi.org/10.1093/ps/86.9.2034
  36. Moon, J.S., Cho, S.K., Choi, H.Y., Kim, J.E., Kim, S.Y., Cho, K.J., and Han, N.S. 2010. Isolation and characterization of biogenic amine-producing bacteria in fermented soybean pastes. J. Microbiol. 48, 257-261. https://doi.org/10.1007/s12275-010-0040-y
  37. Morrow, J.D., Margolies, G.R., Rowland, J., and Jackson Roberts, L. 1991. Evidence that histamine is the causative toxin of scombroid-fish poisoning. N. Engl. J. Med. 324, 716-720. https://doi.org/10.1056/NEJM199103143241102
  38. Ong, L., Henriksson, A., and Shah, N.P. 2006. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int. Dairy J. 16, 446-456. https://doi.org/10.1016/j.idairyj.2005.05.008
  39. Oumer, B.A., Gaya, P., Fernandez-Garcia, E., Marciaca, R., Garde, S., Medina, M., and Nunez, M. 2001. Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture. J. Dairy Res. 68, 117-129. https://doi.org/10.1017/S0022029900004568
  40. Ozogul, F., Tabanelli, G., Toy, N., and Gardini, F. 2015. Impact of cell-free supernatant of lactic acid bacteria on putrescine and other polyamine formation by foodborne pathogens in ornithine decarboxylase broth. J. Agri. Food Chem. 63, 5828-5835. https://doi.org/10.1021/acs.jafc.5b02410
  41. Roberts, R.F., Zottola, E.A., and McKay, L.L. 1992. Use of a nisin producing starter culture suitable for Cheddar cheese manufacture. J. Dairy Sci. 75, 2353-2363. https://doi.org/10.3168/jds.S0022-0302(92)77995-8
  42. Rodtong, S., Nawong, S., and Yongsawatdigul, J. 2005. Histamine accumulation and histamine-forming bacteria in Indian anchovy (Stolephorus indicus). Food Microbiol. 22, 475-482. https://doi.org/10.1016/j.fm.2004.08.009
  43. Roig-Sagues, A. and Eerola, S. 1997. Biogenic amines in meat inoculated with Lactobacillus sake starter strains and an amine-positive lactic acid bacterium. Eur. Food Res. Technol. 205, 227-231.
  44. Roseiro, C., Santos, C., Sol, M., Silva, L., and Fernandes, I. 2006. Prevalence of biogenic amines during ripening of a traditional dry fermented pork sausages and its relation to the amount of sodium chloride added. Meat Sci. 74, 557-563. https://doi.org/10.1016/j.meatsci.2006.03.030
  45. Sgouras, D., Maragkoudakis, P., Petraki, K., martine-Gonzalez, B., Eriotou, E., Michopoulas, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strains Shirota. Appl. Environ. Microbiol. 70, 518-526. https://doi.org/10.1128/AEM.70.1.518-526.2004
  46. Stratton, J.E., Hutkins, R.W., and Taylor, S.L. 1991. Biogenic amines in cheese and other fermented foods: a review. J. Food Prot. 54, 460-470. https://doi.org/10.4315/0362-028X-54.6.460
  47. Sumner, S.S. 1987. Histamine production in Swiss cheese. Ph.D thesis. University of Wisconsin-Madison, USA.
  48. Sumner, S.S., Roche, F., and Taylor, S.L. 1990. Factors controlling histamine production in Swiss cheese inoculated with Lactobacillus buchneri. J. Dairy Sci. 73, 3050-3058. https://doi.org/10.3168/jds.S0022-0302(90)78992-8
  49. Sumner, S.S., Speckhard, M.W., Somers, E.B., and Taylor, S.L. 1985. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak. Appl. Environ. Microbiol. 50, 1094-1096.
  50. Suzzi, G. and Gardini, F. 2003. Biogenic amines in dry fermented sausages: a review. Int. J. Food Microbiol. 88, 41-54. https://doi.org/10.1016/S0168-1605(03)00080-1
  51. Tabanelli, G., Montanari, C., Bargossi, E., Lanciotti, R., Gatto, V., Felis, G., Torriani, S., and Gardini, F. 2014. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci. Int. J. Food Microbiol. 190, 14-23. https://doi.org/10.1016/j.ijfoodmicro.2014.08.023
  52. Tapingkae, W., Tanasupawat, S., Parkin, K.L., Benjakul, S., and Visessanguan, W. 2010. Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzyme Microbiol. Technol. 46, 92-99. https://doi.org/10.1016/j.enzmictec.2009.10.011
  53. Taylor, S.L. 1986. Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol. 17, 91-128. https://doi.org/10.3109/10408448609023767
  54. Taylor, S.L., Guthertz, L.S., Leatherwood, M., Tillman, F., and Lieber, E.R. 1978. Histamine production by foodborne bacterial species. J. Food Safety 1, 173-187. https://doi.org/10.1111/j.1745-4565.1978.tb00271.x
  55. Teodorovic, V., Buncic, S., and Smijanic, D. 1994. A study of factors influencing histamine production in meat. Fleischwirtsch 74, 170-172.
  56. Vale, S. and Glória, M.B. 1997. Determination of biogenic amines in cheese. J. AOAC Int. 80, 1006-1012.
  57. Valsamaki, K., Michaelidou, A., and Polychronidadou, A. 2000. Biogenic amine production in Feta cheese. Food Chem. 71, 259-266. https://doi.org/10.1016/S0308-8146(00)00168-0
  58. Zotolla, E.A., Yezzi, T.L., Ajao, D.B., and Roberts, R.F. 1994. Utilization of Cheddar cheese containing nisin as an antimicrobial agent in other foods. Int. J. Food Microbiol. 24, 227-238. https://doi.org/10.1016/0168-1605(94)90121-X