DOI QR코드

DOI QR Code

Low-Temperature Solution Process of Al-Doped ZnO Nanoflakes for Flexible Perovskite Solar Cells

  • Nam, SeongSik (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Vu, Trung Kien (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Le, Duc Thang (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Oh, Ilwhan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2018.01.04
  • Accepted : 2018.04.09
  • Published : 2018.06.30

Abstract

Herein we report on the selective synthesis and direct growth of nanostructures using an aqueous chemical growth route. Specifically, Al-doped ZnO (AZO) nanoflakes (NFs) are vertically grown on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) sheets at low temperature and ambient environment. The morphological, optical, and electrical properties of the NFs are investigated as a function of the Al content. Furthermore, these AZO-NFs are integrated into perovskite solar devices as the electron transport layer (ETL) and the fabricated devices are tested for photovoltaic performance. It was determined that the doping of AZO-NFs significantly increases the performance metrics of the solar cells, mainly by increasing the short-circuit current of the devices. The observed enhancement is primarily attributed to the improved conductivity of the doped AZO-NF, which facilitates charge separation and reduces recombination. Further, our flexible solar cells fabricated through this low temperature process demonstrate an acceptable reproducibility and stability when exposed to a mechanical bending test.

Keywords

References

  1. S. Aharon, S. Gamliel, B. E. Cohen, and L. Etgar, Phys Chem. Chem. Phys., 2014, 16(22), 10512-10518. https://doi.org/10.1039/C4CP00460D
  2. S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B, 2005, 109(7), 2526-2531. https://doi.org/10.1021/jp0458708
  3. D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E. M. J. Johansson, and A. Hagfeldt, Nanoscale, 2013, 5(23), 11686-11691. https://doi.org/10.1039/c3nr01542d
  4. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., Nature, 2013, 499(7458), 316. https://doi.org/10.1038/nature12340
  5. N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, Chem Mater, 2010, 22, 4769-4775. https://doi.org/10.1021/cm101227h
  6. A. Dymshits, L. Iagher, and L. Etgar, Materials, 2016, 9(1), 60. https://doi.org/10.3390/ma9010060
  7. X. Fan, G. Fang, S. Guo, N. Liu, H. Gao, P. Qin, et al., Nanoscale Res Lett, 2011, 6(1), 546. https://doi.org/10.1186/1556-276X-6-546
  8. P. Gao, M. Gratzel, and M. K. Nazeeruddin, ENERG ENVIRON SCI, 2014, 7(8), 2448-2463. https://doi.org/10.1039/C4EE00942H
  9. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photo, 2014, 8(7), 506. https://doi.org/10.1038/nphoton.2014.134
  10. M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, et al., Energ Environ. Sci., 2012, 5, 9881-9888. https://doi.org/10.1039/c2ee22854h
  11. M. T. Hoang, N. D. Pham, J. H. Han, J. M. Gardner, and I. Oh, ACS Appl. Mater., 2016, 8(19), 11904-11909. https://doi.org/10.1021/acsami.6b03478
  12. Y. V. Kaneti, J. Yue, X. Jiang, and A. Yu, J. Phys. Chem. C., 2013, 117(25), 13153-13162. https://doi.org/10.1021/jp404329q
  13. S. Kazim, M. K. Nazeeruddin, M. Gratzel, and S. Ahmad, Angew, Chem. Int. Ed, 2014, 53, 2812-2824. https://doi.org/10.1002/anie.201308719
  14. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, et al., Chem. Commun, 2013, 49(94), 11089-11091. https://doi.org/10.1039/c3cc46534a
  15. W. A. Laban and L. Etgar, ENERG ENVIRON SCI, 2013, 6(11), 3249-3253. https://doi.org/10.1039/c3ee42282h
  16. H. Li, S. Jiao, H. Li, and L. Li, J. Mater. Sci. Mater. Ele, 2014, 25(6), 2569-2573. https://doi.org/10.1007/s10854-014-1911-5
  17. D. Liu, M. K. Gangishetty, and T. L. Kelly, J Mater Chem A, 2014, 2(46), 19873-19881. https://doi.org/10.1039/C4TA02637C
  18. D. Liu, T. L. Kelly, Nat. Photo, 2014, 8, 133. https://doi.org/10.1038/nphoton.2013.342
  19. D. Liu, J. Yang, and T. L. Kelly, J. Am. Chem. Soc., 2014, 136(49), 17116-17122. https://doi.org/10.1021/ja508758k
  20. K. Mahmood, B. S. Swain, and A. Amassian, Adv. Mater, 2015, 27(18), 2859-2865. https://doi.org/10.1002/adma.201500336
  21. F. J. Ramos, M. C. Lopez Santos, E. Guillen, M. K. Nazeeruddin, M. Gratzel, A. R. Gonzalez Elipe, et al., Chem. Phys. Chem., 2014, 15(6), 1148-1153. https://doi.org/10.1002/cphc.201301215
  22. P. Roy, S. Berger, and P. Schmuki, Angew, Chem. Int. Ed., 2011, 50(13), 2904-2939. https://doi.org/10.1002/anie.201001374
  23. X. Sheng, D. He, J. Yang, K. Zhu, and X. Feng, Nano Lett., 2014, 14(4), 1848-1852. https://doi.org/10.1021/nl4046262
  24. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, et al., Appl. Phys. Lett., 2014, 104(6), 063901. https://doi.org/10.1063/1.4864638
  25. J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong, S. Lv, et al., ACS Appl. Mater., 2014, 6(12), 9711-9718. https://doi.org/10.1021/am502131t
  26. K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, J. Phys. Chem. C., 2010, 114(37), 15782-15785. https://doi.org/10.1021/jp1013658
  27. H. J. Snaith, J Phys Chem Lett, 2013, 4(21), 3623-3630. https://doi.org/10.1021/jz4020162
  28. D.-Y. Son, K.-H. Bae, H.-S. Kim, and N.-G. Park, J. Phys. Chem. C., 2015, 119(19), 10321-10328. https://doi.org/10.1021/acs.jpcc.5b03276
  29. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, et al., Sci Rep, 2014, 4, 6071.
  30. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, J Phys Chem Lett, 2014, 5(89), 1300-1306. https://doi.org/10.1021/jz500434p
  31. X. Y. Xue, L. M. Li, H. C. Yu, Y. J. Chen, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett., 2006, 89(4), 043118. https://doi.org/10.1063/1.2236288
  32. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, et al., Science, 2015, 348(6240), 1234-1237. https://doi.org/10.1126/science.aaa9272
  33. P. F. Yin, T. Ling, Y. R. Lu, Z. W. Xu, S. Z. Qiao, and X. W. Du, Adv. Mater, 2015, 27(4), 740-745. https://doi.org/10.1002/adma.201403947
  34. S. Yun, J. Lee, J. Yang, and S. Lim, Physica B Condens Matter, 2010, 405(1), 413-419. https://doi.org/10.1016/j.physb.2009.08.297
  35. J. Zhang, P. Barboux, and T. Pauporte, Adv. Energ. Mater., 2014, 4(18), 1400932. https://doi.org/10.1002/aenm.201400932
  36. C. Zhao, J. Zhang, Y. Hu, N. Robertson, P. A. Hu, D. Child, et al., Sci. Rep., 2015, 5, 17750.