DOI QR코드

DOI QR Code

Electrodeposition of Mn-Ni Oxide/PEDOT and Mn-Ni-Ru Oxide/PEDOT Films on Carbon Paper for Electro-osmotic Pump Electrode

  • 투고 : 2017.11.18
  • 심사 : 2017.11.28
  • 발행 : 2018.06.30

초록

$MnO_2$, a metal oxide used as an electrode material in electrochemical capacitors (EDLCs), has been applied in binary oxide and conducting polymer hybrid electrodes to increase their stability and capacitance. We developed a method for electrodepositing Mn-Ni oxide/PANI, Mn-Ni oxide/PEDOT, and Mn-Ni-Ru oxide/PEDOT films on carbon paper in a single step using a mixed bath. Mn-Ni oxide/PEDOT and Mn-Ni-Ru oxide/PEDOT electrodes used in an electro-osmotic pump (EOP) have shown better efficiency compared to Mn-Ni oxide and Mn-Ni oxide/PANI electrodes through testing in water as a pumping solution. EOP using a Mn-Ni-Ru oxide/PEDOT electrode was also tested in a 0.5 mM $Li_2SO_4$ solution as a pumping solution to confirm the effect of the $Li^+$ insertion/de-insertion reaction of Ruthenium oxide on the EOP. Experimental results show that the flow rate increases with the increase in current in a 0.5 mM $Li_2SO_4$ solution compared to that obtained when water was used as a pumping solution.

키워드

참고문헌

  1. W. Shin, E. Zhu, R. K. Nagarale, C. H. Kim, J. M. Lee, S. J. Shin, A. Heller, Anal. Chem., 2011, 83(12), 5023-5025. https://doi.org/10.1021/ac201118t
  2. A. Nishino, J. Power Sources, 1996, 60(2), 137-147. https://doi.org/10.1016/S0378-7753(96)80003-6
  3. E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, H. Kahlen, J. Power Sources, 1999, 84(2), 261-269. https://doi.org/10.1016/S0378-7753(99)00326-2
  4. A. Burke, J. Power Sources, 2000, 91(1), 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
  5. P. Simon, Y. Gogotsi, Nat. Mater., 2008, 7(11), 845-854. https://doi.org/10.1038/nmat2297
  6. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev., 2016, 45(21), 5925-5950. https://doi.org/10.1039/C5CS00580A
  7. C. D. Lokhande, D. P. Dubal, O.-S. Joo, Curr. Appl. Phys., 2011, 11(3), 255-270. https://doi.org/10.1016/j.cap.2010.12.001
  8. W. Deng, X. Ji, Q. Chen, C. E. Banks, RSC Adv., 2011, 1(7), 1171-1178. https://doi.org/10.1039/c1ra00664a
  9. G. A. Snook, P. Kao, A. S. Best, J. Power Sources, 2011, 196(1), 1-12. https://doi.org/10.1016/j.jpowsour.2010.06.084
  10. L. Nyholm, G. Nystrom, A. Mihranyan, M. Stromme, Adv. Mater., 2011, 23(33), 3751-3769. https://doi.org/10.1002/adma.201004134
  11. L.-M. Huang, H.-Z. Lin, T.-C. Wen, A. Gopalan, Electrochim. Acta., 2006, 52(3), 1058-1063. https://doi.org/10.1016/j.electacta.2006.06.040
  12. R. Liu, S. B. Lee, J. Am. Chem. Soc., 2008, 130(10), 2942-2943. https://doi.org/10.1021/ja7112382
  13. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Adv. Mater., 2012, 24(38), 5166-5180. https://doi.org/10.1002/adma.201202146
  14. D. Szymanska, I. A. Rutkowska, L. Adamczyk, S. Zoladek, P. J. Kulesza, J. Solid State Electrochem., 2010, 14(11), 2049-2056. https://doi.org/10.1007/s10008-010-1081-1
  15. B. Babakhani, D. G. Ivey, Electrochim. Acta., 2010, 55(12), 4014-4024. https://doi.org/10.1016/j.electacta.2010.02.030
  16. S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc., 2000, 147(2), 444-450. https://doi.org/10.1149/1.1393216
  17. M. Ghaemi, L. Binder, J. Power Sources, 2002, 111(2), 248-254. https://doi.org/10.1016/S0378-7753(02)00309-9
  18. Y.-S. Chen, C.-C. Hu, Electrochem. Solid State Lett., 2003, 6(10), A210-A213. https://doi.org/10.1149/1.1601373
  19. Z. Sun, S. Firdoz, E. Ying-Xuan Yap, L. Li, X. Lu, Nanoscale, 2013, 5(10), 4379-4387. https://doi.org/10.1039/c3nr00209h
  20. H.-M. Lee, K. Lee, C.-K. Kim, Materials, 2014, 7, 265-274. https://doi.org/10.3390/ma7010265
  21. P.-Y. Chuang, C.-C. Hu, Mater. Chem. Phys., 2005, 92(1), 138-145. https://doi.org/10.1016/j.matchemphys.2005.01.004
  22. D.-S. Lin, C.-T. Chou, Y.-W. Chen, K.-T. Kuo, S.-M. Yang, J. Appl. Polym. Sci., 2006, 100(5), 4023-4044. https://doi.org/10.1002/app.23231
  23. L.-J. Bian, F. Luan, S.-S. Liu, X.-X. Liu, Electrochim. Acta., 2012, 64, 17-22. https://doi.org/10.1016/j.electacta.2011.12.012
  24. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater., 2000, 12(7), 481-494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  25. Z. Liu, C. Tang, P. Chen, Q. Yu, W. Li, RSC Adv., 2014, 4(51), 26881-26887. https://doi.org/10.1039/c4ra01835d
  26. Y. R. Ahn, M. Y. Song, S. M. Jo, C. R. Park, D. Y. Kim, Nanotechnology, 2006, 17(12), 2865. https://doi.org/10.1088/0957-4484/17/12/007
  27. D. Susanti, D.-S. Tsai, Y.-S. Huang, Sci. Adv. Mater., 2010, 2(4), 552-559. https://doi.org/10.1166/sam.2010.1123
  28. Y.-Y. Hu, Z. Liu, K.-W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L.-S. Du, K. W. Chapman, P. J. Chupas, X.-Q. Yang, C. P. Grey, Nat. Mater., 2013, 12(12), 1130-1136. https://doi.org/10.1038/nmat3784
  29. J. Jung, M. Cho, M. Zhou, AIP Adv., 2014, 4(1), 017104. https://doi.org/10.1063/1.4861583
  30. A. S. Hassan, A. Navulla, L. Meda, B. R. Ramachandran, C. D. Wick, J. Phys. Chem. C, 2015, 119(18), 9705-9713. https://doi.org/10.1021/jp5123536