Abstract
PURPOSES : The goal of this study is the development of roundabout accident models for urban and non-urban areas. METHODS : This study performed a comparative analysis of the regional factors affecting accidents. Traffic accident data were collected for the period 2010~2014 from the TAAS data set of the Road Traffic Authority. To develop the roundabout accident models, the Poisson and negative binomial regression models were used. A total of 25 explanatory variables such as geometry, and traffic volume were used. RESULTS : The key findings are as follows: First, it was found that the null hypotheses that the number of accidents is the same should be rejected. Second, three Poisson regression accident models, which are statistically significant (${\rho}^2$ of 0.154 and 0.385) were developed. Third, it was noted that although the common variable of the three models (models I~III) is the number of entry lanes, the specific variables are entry lane width, roundabout sign, number of circulatory roadways, splitter island, number of exit lanes, exit lane width, number of approach roads, and truck apron. CONCLUSIONS : The results of this study can provide suggestive countermeasures for decreasing the number of roundabout accidents.