DOI QR코드

DOI QR Code

AW3D30 and SRTM30 Digital Elevation Models -Comparison around coastal islands in Gyeongsangnam-do, South Korea-

AW3D30 DEM과 SRTM30 DEM의 정확도 비교 -경상남도 연안도서를 중심으로-

  • YANG, In-Tae (Dept. of Civil Engineering, Kangwon National University) ;
  • LEE, Dong-Ha (Dept. of Civil Engineering, Kangwon National University) ;
  • ACHARYA, Tri Dev (Dept. of Civil Engineering, Kangwon National University) ;
  • HAN, Dong-Seok (Dept. of Civil Engineering, Chungbuk National University)
  • Received : 2018.06.12
  • Accepted : 2018.06.18
  • Published : 2018.06.30

Abstract

DEM(Digital Elevation Model) being fundamental data in geospatial domain is produced from different data and using various methods. As they are derived their precision varies and altering derivative in application. In this work, we compare two widely used DEMs namely(Advanced Land Observing Satellite World 3D 30m and Shuttle Radar Topography Mission Global 30m) around coastal islands in Gyeongsangnam-do, South Korea. First statistics of each DEM were calculated and later overlapped in Landsat image for visual comparison of areas below and above zero-meter elevation. As a result, it was found that DEMs were highly correlated with each other and had similar statistics. Besides having few high differences in hilly land area, they were able to represent the coastal lines. It has also been noted that they have many negative values and should carefully select study area covering full watershed in coastal regions to avoid negative elevation even after filling the sinks.

수치표고모델(DEM, Digital Elevation Model)은 지형공간 영역의 기본 데이터로서, 다양한 데이터로부터 다양한 방법으로 만들어진다. 수치표고모델이 파생됨에 따라, 적용 분야에서의 그 정밀도 또한 다양하게 변화한다. 본 연구에서는, 대한민국 경상남도 연안의 섬 주변에서 광범위하게 사용되는 있는 두 가지 DEM, 즉 육역관측기술위성 월드 3D 30m(ALOS World 3D 30m) 및 셔틀레이더지형미션 글로벌 30m(SRTM Global 30m)를 비교하였다. 우선 DEM의 첫 번째 통계를 계산한 다음, 해발표고 0을 기준으로 높고 낮은 지역을 시각적으로 비교하기 위하여 Landsat 이미지에 중첩하였다. 연구 결과, DEM은 서로 높은 상관관계가 있으며, 유사한 통계를 가지고 있음을 알 수 있었다. 그리고 구릉지에서는 높은 차이가 거의 없었을 뿐만 아니라, 해안선을 나타낼 수 있었다. 또한 DEM은 많은 음의 값을 가지고 있다는 점이 확인되었으며, 싱크를 채운 후에도 표고가음으로 측정되는 것을 방지하기 위해, 해안 지역 전체를 포함하는 연구 지역을 신중하게 선택해야 할 것으로 보인다.

Keywords

References

  1. Acharya, T.D., I.T. Yang and D.H. Lee. 2017(a). GIS-based landslide susceptibility mapping of Bhotang, Nepal using frequency ratio and statistical index methods. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 35(5):357-364. https://doi.org/10.7848/KSGPC.2017.35.5.357
  2. Acharya, T.D., I.T. Yang and D.H. Lee. 2017(b). GIS-based preliminary feasibility study for the optimal route selection for China-India railway through Nepal. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 35(4):281-289. https://doi.org/10.7848/KSGPC.2017.35.4.281
  3. Acharya, T.D., I.T. Yang and D.H. Lee. 2018. Comparative analysis of digital elevation models between AW3D30, SRTM30 and airborne LiDAR. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 36(1):17-24. https://doi.org/10.7848/KSGPC.2018.36.1.17
  4. Acharya, T.D., I.T. Yang and D.H. Lee. 2016. Surface water area delineation in Landsat OLI Image using reflectance and SRTM DEM derivatives. 2016 Conference on Geo-Spatial Information, The Korean Society for Geospatial Information Science, Gunsan, pp. 233-234.
  5. Dawod, G. and K. Al-Ghamdi. 2017. Reliability of recent global digital elevation models for geomatics applications in Egypt and Saudi Arabia. Journal of Geographic Information System 9(6):685-698. https://doi.org/10.4236/jgis.2017.96043
  6. Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank and D. Alsdorf. 2007. The shuttle radar topography mission. Rev. Geophys 45(2):1-33.
  7. Goulden, T., C. Hopkinson, R. Jamieson and S. Sterling. 2016. Sensitivity of DEM, slope, aspect and watershed attributes to LiDAR measurement uncertainty. Remote Sensing of Environment 179:23-35. https://doi.org/10.1016/j.rse.2016.03.005
  8. Gyasi-Agyei, Y., G. Willgoose and F.P. De Troch. 1995. Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology. Hydrol. Process 9(3-4):363-382. https://doi.org/10.1002/hyp.3360090310
  9. Hong, H., J. Liu, D.T. Bui, B. Pradhan, T.D. Acharya, B.T. Pham, A. Zhu, W. Chen and B.B. Ahmad. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena 163:399-413. https://doi.org/10.1016/j.catena.2018.01.005
  10. Krishnan, S., C. Crosby, V. Nandigam, M. Phan, C. Cowart, C. Baru and R. Arrowsmith. 2011. OpenTopography: a services oriented architecture for community access to LIDAR topography. Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, ACM, Washington DC, USA, 7p.
  11. Lee, D.H. and T.D. Acharya. 2017. Comparison of complete bouguer anomalies from satellite marine gravity models with shipbome gravity data in East Sea, Korea. J. Mar. Sci. Technol 25(6):625-632.
  12. Oksanen, J. and T. Sarjakoski. 2005. Error propagation of DEM-based surface derivatives. Computers & Geosciences 31(8):1015-1027. https://doi.org/10.1016/j.cageo.2005.02.014
  13. Schumann, G., P. Matgen, M.E.J. Cutler, A. Black, L. Hoffmann and L. Pfister. 2008. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS Journal of Photogrammetry and Remote Sensing 63(3):283-296. https://doi.org/10.1016/j.isprsjprs.2007.09.004
  14. Tadono, T., H. Ishida, F. Oda, S. Naito, K. Minakawa and H. Iwamoto. 2014. Precise global DEM generation by ALOS PRISM. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2(4):71-76.
  15. Takaku, J. and T. Tadono. 2017. Quality updates of'AW3D'global DSM generated from ALOS PRISM pp. 5666-5669.
  16. Yang, I.T., T.D. Acharya and D.H Lee. 2016. Landslide susceptibility mapping for 2015 earthquake region of Sindhupalchowk, Nepal using Frequency Ratio. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(4):443-451. https://doi.org/10.7848/ksgpc.2016.34.4.443
  17. Yang, I.T., T.D. Acharya and M.S. Shin. 2014. Cycling: An efficient solution to rising transportation problems in Kathmandu. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(6):617-623. https://doi.org/10.7848/ksgpc.2014.32.6.617

Cited by

  1. SAR 위성 영상을 이용한 수계탐지의 최적 머신러닝 밴드 조합 연구 vol.23, pp.3, 2018, https://doi.org/10.11108/kagis.2020.23.3.120