참고문헌
- Aerts, R. (1997). Climate, leaf litter chemistry and decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. https://doi.org/10.2307/3546886
- Birch, H. F. (1958). The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil, 10, 9-31. https://doi.org/10.1007/BF01343734
- Chae, N. Y. (2011). Annual variation of soil respiration and precipitation in a temperate forest (Quercus serrata and Carpinus laxiflora) under East Asian monsoon climate. Journal of Plant Biology, 54, 101-111. https://doi.org/10.1007/s12374-011-9148-9
- Dairaku, K., Emori, S., & Oki, T. (2004). Rainfall amount, intensity, duration and frequency relationships in the Mae Chaem Watershed in Southeast Asia. Journal of Hydrometeorology, 5, 458-470. https://doi.org/10.1175/1525-7541(2004)005<0458:RAIDAF>2.0.CO;2
- Davidson, E. A., Belk, E., & Boone, R. D. (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
- Davidson, E. A., Verchot, L. V., Cattaanio, J. H., Ackerman, I. L., & Carvalho, J. E. M. (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69. https://doi.org/10.1023/A:1006204113917
- Eom, J. Y., Jeong, S. H., Chun, J. H., Lee, J. H., & Lee, J. S. (2018). Long-term characteristics of soil respiration in a Korean cool-temperate deciduous forest in a monsoon climate. Animal Cells and Systems. https://doi.org/10.1080/19768354.2018.1433234.
-
Fang, C., Moncrieff, J. B., Gholz, H. L., & Clark, K. L. (1998). Soil
$CO_2$ efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205, 135-146. https://doi.org/10.1023/A:1004304309827 - Hanson, P. J., Eswards, C. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. https://doi.org/10.1023/A:1006244819642
-
Hirano, T., Kim, H., & Tanaka, Y. (2003). Long-term half-hourly measurement of soil
$CO_2$ concentration and soil respiration in a temperate deciduous forest. Journal of Geophysical Research: Atmospheres, 108, D20. - Ito, A. (2008). The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agricultural and Forest Meteorology, 148, 738-747. https://doi.org/10.1016/j.agrformet.2007.12.007
- Jeong, S. H., Eom, J. Y., Lee, J. H. & Lee, J. S. (2017). Effect of rainfall events on soil carbon flux in mountain pastures. Journal of Ecology and Environment, 41, 37 https://doi.org/10.1186/s41610-017-0056-x
- Jeong, S. H., Eom, J. Y., Park, J. Y., Lee, J. H. & Lee, J. S. (2018). Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland. Journal of Ecology and Environment, 42, 3. https://doi.org/10.1186/s41610-018-0063-6
- Joo, S. J., Park, S. U., Park, M. S., & Lee, C. S. (2012). Estimation of soil respiration using automated chamber systems in an oak (Quercus mongolica) forest at the Nam-San site in Seoul, Korea. Science of the Total Environment, 416, 400-409. https://doi.org/10.1016/j.scitotenv.2011.11.025
- Jung, E. Y., Otieno, D., Kwon, H., Lee, B., Lim, J. H., Kim, J., & Tenhunen, J. (2013). Water use by a warm-temperate deciduous forest under the influence of the Asian monsoon: contributions of the overstory and understory to forest water use. Journal of Plant Research, 126, 661-674. https://doi.org/10.1007/s10265-013-0563-5
-
Kim, D. G., Mu, S., Kang, S., & Lee, D. (2010). Factors controlling soil
$CO_2$ effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea. Soil Biology and Biochemistry, 42, 576-585. https://doi.org/10.1016/j.soilbio.2009.12.005 - Kwon, H., Kim, J., & Hong, J. (2009). Influence of the Asian Monsoon on net ecosystem carbon exchange in two major plant functional types in Korea. Biogeosciences Discussions, 6, 10279-10309. https://doi.org/10.5194/bgd-6-10279-2009
- Laiju, N., Otieno, D., Jung, E. Y., Lee, B., Tenhunen, J., Lim, J. H., & Kang, S. (2012). Environmental controls on growing-season sap flow density of Quercus serrata Thunb in a temperate deciduous forest of Korea. Journal of Ecology and Environment, 35, 213-225. https://doi.org/10.5141/JEFB.2012.026
- Lee, J. H., Eom, J. Y., Jeong, S. H., Hong, S. B., Park, E. J., & Lee, J. S. (2017). Influence of carbonized crop residue on soil carbon storage in red pepper field. Journal of Ecology and Environment, 41, 40. https://doi.org/10.1186/s41610-017-0059-7
-
Lee, M. S., Lee, J., & Koizumi, H. (2008). Temporal variation in
$CO_2$ efflux from soil and snow surfaces in a Japanese cedar (Cryptomeria japonica) plantation, central Japan. Ecological Research, 23, 777-785. https://doi.org/10.1007/s11284-007-0439-z -
Lee, M. S., Nakane, K., Nakatsubo, T., Mo, W. H., & Koizumi, H. (2002). Effects of rainfall events on soil
$CO_2$ flux in a cool temperate deciduous broad-leaved forest. Ecological Research, 17, 401-409. https://doi.org/10.1046/j.1440-1703.2002.00498.x -
Lee, N. Y., Koo, J. W., Noh, N. J., Kim, J., & Son, Y. (2010). Seasonal variation in soil
$CO_2$ efflux in evergreen coniferous and broad-leaved deciduous forests in a cool-temperate forest, central Korea. Ecological Research, 25, 609-617. https://doi.org/10.1007/s11284-010-0691-5 -
Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y., & Inoue, G. (2004). In situ comparison of four approaches to estimating soil
$CO_2$ efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97-117. https://doi.org/10.1016/j.agrformet.2003.10.002 -
Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G., & Tingey, D. T. (1999). Elevated
$CO_2$ and temperature impacts on different components of soil CO1 efflux in Douglas-fir terracosms. Global Change Biology, 5, 157-168. https://doi.org/10.1046/j.1365-2486.1999.00211.x - Linn, D. M., & Doran, J. W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267-1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x
-
Liu, X., Wan, S., Su, B., Hui, D., & Luo, Y. (2002). Response of soil
$CO_2$ efflux to water manipulation in a tallgrass prairie ecosystems. Plant and Soil, 240, 213-223. https://doi.org/10.1023/A:1015744126533 - Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. https://doi.org/10.2307/2389824
- Meentemeyer, V. (1984). The geography of organic decomposition rates. Annual Association of American Geography, 74, 551-560. https://doi.org/10.1111/j.1467-8306.1984.tb01473.x
- Mo, W., Lee, M. S., Uchida, M., Inatomi, M., Saigusa, N., Mariko, S., & Koizumi, H. (2005). Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agricultural and Forest Meteorology, 134, 81-94. https://doi.org/10.1016/j.agrformet.2005.08.015
-
Noh, N. J., Son, Y., Lee, S. K., Yoon, T. K., Seo, K. W., Kim, C., Lee, W. K., Bae, S. W., & Hwang, J. (2010). Influence of stand density on soil
$CO_2$ efflux for a Pinus densiflora forest in Korea. Journal of Plant Research, 123, 411-419. https://doi.org/10.1007/s10265-010-0331-8 -
Oikawa, T. (1991). Increase of atmospheric
$CO_2$ concentration and biosphere. Journal of Agricultural Meteorology, 47, 191-194. https://doi.org/10.2480/agrmet.47.191 - Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. https://doi.org/10.1038/298156a0
-
Pumpanen, J., Ilvesniemi, H., Peramaki, M., & Hari, P. (2003). Seasonal patterns of soil
$CO_2$ efflux and soil air$CO_2$ concentration in a Scots pine forest: Comparison of two chamber techniques. Global Change Biology, 9, 371-382. https://doi.org/10.1046/j.1365-2486.2003.00588.x - Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. https://doi.org/10.3402/tellusb.v44i2.15428
-
Rayment, M. B., & Jarvis, P. G. (2000). Temporal and spatial variation of soil
$CO_2$ efflux in a Canadian boreal forest. Soil Biology and Biochemistry, 32, 35-45. https://doi.org/10.1016/S0038-0717(99)00110-8 - Rustad, L. E., Huntington, T. G., & Boone, R. D. (2000). Controls on soil respiration: implication for climatic change. Biogeochemistry, 48, 1-6. https://doi.org/10.1023/A:1006255431298
- Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77-91. https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
- Suh, S. U., Chun, Y. M., Chae, N. Y., Kim, J., Lim, J. H., Yokozawa, M., Lee, M. S., & Lee, J. S. (2006). A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecological Research, 21, 405-414. https://doi.org/10.1007/s11284-005-0137-7
- Van Gestel, M., Ladd, J. N., & Amato, M. (1991). Carbon and nitrogen mineralization from two soils of contrasting texture and micro-aggregate stability: influence of sequential fumigation, drying and storage. Soil Biology and Biochemistry, 23, 313-322. https://doi.org/10.1016/0038-0717(91)90185-M
- Wang, C. K., Yang, J. Y., & Zhang, Q. Z. (2006). Soil respiration in six temperate forest in China. Global Change Biology, 12, 2103-2114. https://doi.org/10.1111/j.1365-2486.2006.01234.x
- Woodwell, G. M., Mackenzie, F. T., Houghton, R. A., Apps, M., Gorham, E., & Davidson, E. (1998). Biotic feedbacks in the warming of the earth. Climatic Change, 40, 495-518. https://doi.org/10.1023/A:1005345429236
-
Wu, Y., Liu, G., Fu, B., Liu, Z., & Hu, H. (2006). Comparing soil
$CO_2$ emission in pine plantation and oak shurb: dynamic and correlations. Ecological Research, 21, 840-848. https://doi.org/10.1007/s11284-006-0040-x - Xu, M., & Qi, Y. (2001). Spatial and seasonal variation of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 15, 687-696. https://doi.org/10.1029/2000GB001365
- Yun, K. S., Shin, S. H., Ha, K. J., Kitoh, A., & Kusunoki, S. (2008). East Asian precipitation change in the global warming climate simulated by a 20-km mesh AGCM. Asia-Pacific Journal of Atmospheric Sciences, 44, 233-247.
- Yuste, J. C., Janssens, I. A., Carrara, A., Meiresonne, L., & Ceulemans, R. (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 23, 1263-1270. https://doi.org/10.1093/treephys/23.18.1263
- Zhou, X., Talley, M., & Luo, Y. (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems, 12, 1369-1380. https://doi.org/10.1007/s10021-009-9296-7
피인용 문헌
- Correction to: Effect of precipitation on soil respiration in a temperate broad-leaved forest vol.44, pp.1, 2018, https://doi.org/10.1186/s41610-020-00176-5
- Effects of Rainfall Manipulation on Ecosystem Respiration and Soil Respiration in an Alpine Steppe in Northern Tibet Plateau vol.9, pp.None, 2018, https://doi.org/10.3389/fevo.2021.708761
- Respiration of Russian soils: Climatic drivers and response to climate change vol.785, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.147314
- The Radial Growth of Picea wilsonii Was More Restricted by Precipitation Due to Climate Warming on Mt. Guandi, China vol.12, pp.11, 2021, https://doi.org/10.3390/f12111602