DOI QR코드

DOI QR Code

Use of tar color additives as a light filter to enhance growth and lipid production by the microalga Nannochloropsis gaditana

  • Shin, Won-Sub (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Jung, Simon MoonGeun (Korea Research Institute of Chemical Technology) ;
  • Cho, Chang-Ho (Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Woo, Do-Wook (Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Woong (Department of Environmental Engineering, Kyungpook National University) ;
  • Kwon, Jong-Hee (Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2017.10.31
  • 심사 : 2018.01.26
  • 발행 : 2018.06.30

초록

The spectral composition of light can affect the growth and biochemical composition of photosynthetic microalgae. This study examined the use of light filtering through a solution of soluble colored additives, a cost-effective method to alter the light spectrum, on the growth and lipid production of an oleaginous microalga, Nannochloropsis gaditana (N. gaditana). Cells were photoautotrophically cultivated under a white light emitting diode (LED) alone (control) or under a white LED that passed through a solution of red and yellow color additive (4:1 ratio) that blocked light below 600 nm. The specific growth rate was significantly greater under filtered light than white light ($0.2672d^{-1}$ vs. $0.1930d^{-1}$). Growth under filtered light also increased the fatty acid methyl ester (FAME) yield by 22.4% and FAME productivity by 80.0%, relative to the white light control. In addition, the content of saturated fatty acids was greater under filtered light, so the biodiesel products had better stability. These results show that passing white light through an inexpensive color filter can simultaneously enhance cellular growth and lipid productivity of N. gaditana. This approach of optimizing the light spectrum may be applicable to other species of microalgae.

키워드

참고문헌

  1. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  2. Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science 2010;329:796-799. https://doi.org/10.1126/science.1189003
  3. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87-96. https://doi.org/10.1263/jbb.101.87
  4. Ahmad AL, Yasin NHM, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sust. Energ. Rev. 2011;15:584-593. https://doi.org/10.1016/j.rser.2010.09.018
  5. Franco-Lara E, Havel J, Peterat F, Weuster-Botz D. Model-supported optimization of phototrophic growth in a stirred-tank photobioreactor. Biotechnol. Bioeng. 2006;95:1177-1187. https://doi.org/10.1002/bit.21086
  6. Apel AC, Weuster-Botz D. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess Biosyst. Eng. 2015;38:995-1008. https://doi.org/10.1007/s00449-015-1363-1
  7. Melis A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009;177:272-280. https://doi.org/10.1016/j.plantsci.2009.06.005
  8. Simionato D, Basso S, Giacometti GM, Morosinotto T. Optimization of light use efficiency for biofuel production in algae. Biophys. Chem. 2013;182:71-78. https://doi.org/10.1016/j.bpc.2013.06.017
  9. Yeh KL, Chang JS. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnol. J. 2011;6:1358-1366. https://doi.org/10.1002/biot.201000433
  10. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab. Eng. 2015;27:1-9. https://doi.org/10.1016/j.ymben.2014.10.002
  11. Wahidin S, Idris A, Shaleh SR. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 2013;129:7-11. https://doi.org/10.1016/j.biortech.2012.11.032
  12. Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies 2012;5:1532-1553. https://doi.org/10.3390/en5051532
  13. Wilhelm C, Jakob T. From photons to biomass and biofuels: Evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl. Microbiol. Biotechnol. 2011;92:909-919. https://doi.org/10.1007/s00253-011-3627-2
  14. Singh AK, Bhattacharyya-Pakrasi M, Elvitigala T, Ghosh B, Aurora R, Pakrasi HB. A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol. 2009;151:1596-1608. https://doi.org/10.1104/pp.109.144824
  15. Ooms MD, Dinh CT, Sargent EH, Sinton D. Photon management for augmented photosynthesis. Nat. Commun. 2016;7:12699. https://doi.org/10.1038/ncomms12699
  16. Kim CW, Sung M-G, Nam K, Moon M, Kwon J-H, Yang J-W. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour. Technol. 2014;159:30-35. https://doi.org/10.1016/j.biortech.2014.02.024
  17. Ra C-H, Kang C-H, Jung J-H, Jeong G-T, Kim S-K. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour. Technol. 2016;212:254-261. https://doi.org/10.1016/j.biortech.2016.04.059
  18. Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour. Technol. 2014;162:38-44. https://doi.org/10.1016/j.biortech.2014.03.113
  19. Vadiveloo A, Moheimani NR, Kosterink NR, et al. Photosynthetic performance of two Nannochloropsis spp. under different filtered light spectra. Algal Res. 2016;19:168-177. https://doi.org/10.1016/j.algal.2016.08.014
  20. Okumura C, Saffreena N, Rahman MA, Hasegawa H, Miki O, Takimoto A. Economic efficiency of different light wavelengths and intensities using LEDs for the cultivation of green microalga Botryococcus braunii (NIES-836) for biofuel production. Environ. Prog. Sust. Energ. 2015;34:269-275. https://doi.org/10.1002/ep.11951
  21. Mohsenpour SF, Richards B, Willoughby N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour. Technol. 2012;125:75-81. https://doi.org/10.1016/j.biortech.2012.08.072
  22. Mohsenpour SF, Willoughby N. Effect of $CO_2$ aeration on cultivation of microalgae in luminescent photobioreactors. Biomass Bioenerg. 2016;85:168-177. https://doi.org/10.1016/j.biombioe.2015.12.002
  23. Khalili A, Najafpour GD, Amini G, Samkhaniyani F. Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris. Biotechnol. Bioprocess Eng. 2015;20:284-290. https://doi.org/10.1007/s12257-013-0845-8
  24. Kumar MS, Hwang J-H, Abou-Shanab RAI, Kabra AN, Ji M-K, Jeon B-H. Influence of $CO_2$ and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sust. Energy 2014;6:063107. https://doi.org/10.1063/1.4901541
  25. Hultberg M, Jonsson HL, Bergstrand KJ, Carlsson AS. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour. Technol. 2014;159:465-467. https://doi.org/10.1016/j.biortech.2014.03.092
  26. Bland E, Angenent LT. Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of Cyanobacteria. Bioresour. Technol. 2016;216:579-586. https://doi.org/10.1016/j.biortech.2016.05.116
  27. Simionato D, Sforza E, Corteggiani Carpinelli E, Bertucco A, Giacometti GM, Morosinotto T. Acclimation of Nannochloropsis gaditana to different illumination regimes: Effects on lipids accumulation. Bioresour. Technol. 2011;102:6026-6032. https://doi.org/10.1016/j.biortech.2011.02.100
  28. Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS. Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenerg. 2012;39:449-453. https://doi.org/10.1016/j.biombioe.2012.01.046
  29. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009;100:261-268. https://doi.org/10.1016/j.biortech.2008.06.039
  30. Lubian LM, Montero O, Moreno-Garrido I, et al. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol. 2000;12:249-255. https://doi.org/10.1023/A:1008170915932
  31. Das P, Lei W, Aziz SS, Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 2011;102:3883-3887. https://doi.org/10.1016/j.biortech.2010.11.102
  32. Petroutsos D, Tokutsu R, Maruyama S, et al. A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 2016;537:563-566. https://doi.org/10.1038/nature19358
  33. Mittelbach M. Diesel fuel derived from vegetable oils, VI: Specifications and quality control of biodiesel. Bioresour. Technol. 1996;56:7-11. https://doi.org/10.1016/0960-8524(95)00172-7
  34. Meher L, Vidyasagar D, Naik S. Technical aspects of biodiesel production by transesterification - A review. Renew. Sust. Energ. Rev. 2006;10:248-268. https://doi.org/10.1016/j.rser.2004.09.002
  35. Benjumea P, Agudelo JR, Agudelo AF. Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions. Energy Fuels 2010;25:77-85.

피인용 문헌

  1. Red Light Variation an Effective Alternative to Regulate Biomass and Lipid Profiles in Phaeodactylum tricornutum vol.10, pp.7, 2020, https://doi.org/10.3390/app10072531
  2. Effect of fluorescent dye positioning and concentration on the growth parameters and lipid content of Chlorella sp. in a flat panel photobioreactor vol.42, pp.8, 2020, https://doi.org/10.1007/s10529-020-02862-9
  3. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition vol.10, pp.10, 2018, https://doi.org/10.3390/biology10101060