DOI QR코드

DOI QR Code

Seasonal impact to air qualities in industrial areas of the Arabian Gulf region

  • Al-Taani, Ahmed A. (Department of Earth and Environmental Sciences, Faculty of Science, Yarmouk University) ;
  • Howari, Fares M. (College of Natural & Health Sciences, Zayed University) ;
  • Nazzal, Yousef (College of Natural & Health Sciences, Zayed University) ;
  • Yousef, Ahmad (Ministry of Energy)
  • Received : 2017.10.20
  • Accepted : 2017.11.25
  • Published : 2018.06.30

Abstract

Air quality conditions and pollution status have been evaluated in the industrial area between Sharjah and Ajman border in UAE. Daily concentrations of $O_3$, CO, $NO_2$, $SO_2$, $PM_{2.5}$, $PM_{10}$, Total Volatile Organic Compounds (TVOC) and Total Suspended Particulate (TSP) have been monitored from Sept. 2015 to April 2016. The monthly average concentrations of $O_3$, CO, $NO_2$, $SO_2$, TVOC were within the UAE ambient air quality standards during the survey period. However, $PM_{10}$ and TSP levels exceeded the recommended limits in Sept. 2015, Oct. 2015 and March 2016. Temporal variations in air quality parameters showed highest levels in March 2016 for $PM_{2.5}$, $PM_{10}$, $NO_2$, TVOC and TSP, whereas $O_3$, $SO_2$ and CO showed relatively low values in this month. $PM_{2.5}$ levels in ambient air were above the EPA guideline of $35{\mu}g/m^3$ in all months. $PM_{2.5}$ was the critical ambient air pollutant with Index for Pollutant ($I_p$) values varying from 103-209, indicating Air Quality Index categories of unhealthy for sensitive groups (62.5%) to unhealthy (25%) to very unhealthy (12.5%). The $I_p$ average values of $PM_{2.5}$ decreased from Sept. 2015 to reach lowest value in Dec. 2015 before increasing gradually, peaking in March 2016. These results suggest the potential health risks associated with $PM_{2.5}$ is low in winter, where the prevailing meteorological conditions of lower temperatures, higher humidity, higher wind speed reduced particulate matter. The results revealed the industrial area is impacted by anthropogenic and natural sources of particulate matter.

Keywords

References

  1. Barrett S, Graddy K. Freedom, growth, and the environment. Environ. Dev. Econ. 2000;5:433-456. https://doi.org/10.1017/S1355770X00000267
  2. Analitis A, Katsouyanni K, Dimakopoulou K, et al. Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology 2006;17:230-233. https://doi.org/10.1097/01.ede.0000199439.57655.6b
  3. Burnett RT, Cakmak S, Brook JR, Krewski D. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environ. Health Perspect. 1997;105:614-620. https://doi.org/10.1289/ehp.97105614
  4. Goldberg MS, Burnett RT, Bailar JC 3rd, et al. The association between daily mortality and ambient air particle pollution in Montreal, Quebec. 2. Cause-specific mortality. Environ. Res. 2001;86:26-36. https://doi.org/10.1006/enrs.2001.4243
  5. Burnett RT, Cakmak S, Raizenne ME, et al. The association between ambient carbon monoxide levels and daily mortality in Toronto, Canada. J. Air Waste Manag. Assoc. 1998;48:689-700. https://doi.org/10.1080/10473289.1998.10463718
  6. Goldberg MS, Giannetti N, Burnett RT, Mayo NE, Valois MF, Brophy JM. A panel study in congestive heart failure to estimate the short-term effects from personal factors and environmental conditions on oxygen saturation and pulse rate. Occup. Environ. Med. 2008;65:659-666. https://doi.org/10.1136/oem.2007.034934
  7. Ostro B, Broadwin R, Green S, Feng WY, Lipsett M. Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environ. Health Perspect. 2006;114:29-33.
  8. Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ. Health Perspect. 2009;117:898. https://doi.org/10.1289/ehp.0800108
  9. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015;525:367-371. https://doi.org/10.1038/nature15371
  10. Burnett RT, Pope III CA, Ezzati M, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014;122:397-403. https://doi.org/10.1289/ehp.1307049
  11. World Bank. Cost of pollution in China: Economic estimates of physical damages. Rural Development, Natural Resources and Environment Management Unit. Washington D.C.; 2007.
  12. Kuttler W, Strassburger A. Air quality measurements in urban green areas - A case study. Atmos. Environ. 1999;33:4101-4108. https://doi.org/10.1016/S1352-2310(99)00151-X
  13. Masiol M, Agostinelli C, Formenton G, Tarabotti E, Pavoni B. Thirteen years of air pollution hourly monitoring in a large city: Potential sources, trends, cycles and effects of car-free days. Sci. Total Eviron. 2014;494/495:84-96. https://doi.org/10.1016/j.scitotenv.2014.06.122
  14. Nevers ND. Air Pollution Control Engineering. 2nd ed., McGraw-Hill Companies, Inc., New York; 2000. p. 571-573.
  15. Gilge S, Plass-Duelmer C, Fricke W, et al. Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe. Atmos. Chem. Phys. 2010;10:12295-12316. https://doi.org/10.5194/acp-10-12295-2010
  16. Lamsal L, Martin R, van Donkelaar A, et al. Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. J. Geophys. Res. Atmos. 2010;115:D05302.
  17. Yoo JM, Jeong MJ, Kim D, et al. Spatiotemporal variations of air pollutants ($O_3,\;NO_2,\;SO_2,\;CO,\;PM_{10},\;and\;VOCs$) with land-use types. Atmos. Chem. Phys. 2015;15:10857-10885. https://doi.org/10.5194/acp-15-10857-2015
  18. Wang Y, McElroy MB, Munger JW, et al. Variations of $O_3$ and CO in summertime at a rural site near Beijing. Atmos. Chem. Phys. 2008;8:6355-6363.
  19. Klemm O, Stockwell WR, Schlager H, Krautstrunk M. $NO_x$ or VOC limitation in East German ozone plumes? J. Atmos. Chem. 2000;25:1-18.
  20. Derwent R, Jenkin M, Saunders S, et al. Photochemical ozone formation in north west Europe and its control. Atmos. Environ. 2003;7:1983-1991.
  21. EPA (United States Environmental Protection Agency). Technical assistance document for reporting of daily air quality-the air quality index (AQI). EPA-454/B-09-001. U.S. Environmental Protection Agency, North Carolina; 2009.
  22. Liu DHF, Liptak BG. Air pollution. Boca Raton: Lewis Publishers; 2000.
  23. Al-Momani T, Al-Taani AA, Al-Nasser A, El-Radaideh N. An assessment of automobile emissions in Irbid, Northwest Jordan. Electron. J. Appl. Stat. Anal. 2011;4:91-102.
  24. EPA (U.S. Environmental Protection Agency), 2015. National Ambient Air Quality Standards (NAAQS). Available from: https://www.epa.gov/criteria-air-pollutants/naaqs-table.
  25. Jassim MS, Coskune G. Assessment of spatial variations of particulate matter ($PM_{10}\;and\;PM_{2.5}$) in Bahrain identified by air quality index (AQI). Arab. J. Geosci. 2017;10:19. https://doi.org/10.1007/s12517-016-2808-9
  26. Sugimoto N, Shimizu A, Matsui I, Nishikawa M. A method for estimating the fraction of mineral dust in particulate matter using $PM_{2.5}-to-PM_{10}$ ratios. Particuology 2016;28:114-120. https://doi.org/10.1016/j.partic.2015.09.005
  27. Zakey AS, Abdel-Wahab MM, Pettersson JBC, Gatari MJ, Hallquist M. Seasonal and spatial variation of atmospheric particulate matter in a developing megacity, the Greater Cairo, Egypt. Atmosfera 2008;21:171-189.
  28. Querol X, Alastuey A, Rodriguez S, et al. $PM_{10}\;and\;PM_{2.5}$ source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos Environ. 2001;35:6407-6419. https://doi.org/10.1016/S1352-2310(01)00361-2
  29. Kulshrestha A, Satsangi PG, Masih J, Taneja A. Metal concentration of $PM_{2.5}\;and\;PM_{10}$ particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 2009;407:6196-6204. https://doi.org/10.1016/j.scitotenv.2009.08.050
  30. Spindler G, Gruner A, Muller K, et al. Long-term size segregated particle ($PM_{10},\;PM_{2.5},\;PM_1$) characterization study at Melpitz-influence of air mass inflow, weather conditions and season. J. Atmos. Chem. 2013;70:165-195. https://doi.org/10.1007/s10874-013-9263-8
  31. Al-Taani AA, Rashdan M, Khashashneh S. Atmospheric dry deposition of mineral dust to the Gulf of Aqaba, Red Sea: Rate and trace elements. Mar. Pollut. Bul. 2015;92:252-258. https://doi.org/10.1016/j.marpolbul.2014.11.047
  32. Ehrlich C, Noll G, Kalkoff WD, Baumbach G, Dreiseidler A. $PM_{10},\;PM_{2.5},\;and\;PM_{1.0}$ - Emissions from industrial plants - Results from measurement programmes in Germany. Atmos. Environ. 2007;41:6236-6254. https://doi.org/10.1016/j.atmosenv.2007.03.059
  33. Mukherjee A, Agrawal M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017;15:283-309. https://doi.org/10.1007/s10311-017-0611-9

Cited by

  1. Size distributions of atmospheric particulate matter and associated trace metals in the multi-industrial city of Ulsan, Korea vol.24, pp.2, 2019, https://doi.org/10.4491/eer.2018.226
  2. Long-term trends in ambient fine particulate matter from 1980 to 2016 in United Arab Emirates vol.191, pp.3, 2019, https://doi.org/10.1007/s10661-019-7259-9
  3. Assessment of heavy metals in roadside dust along the Abu Dhabi-Al Ain National Highway, UAE vol.78, pp.14, 2018, https://doi.org/10.1007/s12665-019-8406-x