Acknowledgement
Supported by : Science and Engineering Research Board (SERB)
References
- Akavci, S. (2010), "Two new hyperbolic shear displacement models for orthotropic laminated composite plates", Mech. Compos. Mater., 46(2), 215-226. https://doi.org/10.1007/s11029-010-9140-3
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Bhaskar, K., Varadan, T.K. and Ali, J.S.M. (1996), "Thermoelastic solution for orthotropic and anisotropic composite laminates", Compos. Part B, 27(5), 415-420. https://doi.org/10.1016/1359-8368(96)00005-4
- Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses anddeflections of functionally graded sandwich plates using a new refined hyperbolic shear deformationtheory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
- Carrera, E. (1998), "Evaluation of layerwise mixed theories for laminated plates analysis", AIAA J., 36(5), 830-839. https://doi.org/10.2514/2.444
- Carrera, E. (2001), "Developments, ideas, and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayered plates and shells", Appl. Mech. Rev., 54(4), 301-329. https://doi.org/10.1115/1.1385512
- Carrera, E. (2003a), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Methods Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224
- Carrera, E. (2003b), "Historical review of zig-zag theories for multi-layered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614
- Cetkovic, M. (2015), "Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model", Compos. Struct., 125, 388-399. https://doi.org/10.1016/j.compstruct.2015.01.051
- Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
- Daouadji, T.H., Tounsi, A. and Bedia, E.A.A. (2013), "A new higher order shear deformation model for static behavior of functionally graded plates", Adv. Appl. Math. Mech., 5(3), 351-364. https://doi.org/10.4208/aamm.11-m11176
- Fares, M.E. and Zenkour, A.M. (1999), "Mixed variational formula for the thermal bending of laminated plates", J. Therm. Stresses, 22(3), 347-365. https://doi.org/10.1080/014957399280913
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Analysis of composite plates by trigonometric shear deformation theory and multiquadrics", Comput. Struct., 83(27), 2225-2237. https://doi.org/10.1016/j.compstruc.2005.04.002
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast Compos., 21(9), 775-813. https://doi.org/10.1177/073168402128988481
- Grover, N., Maiti, D.K. and Singh, BN. (2013a), "New nonpolynomial shear-deformation theories for structural behavior of laminated composite and sandwich plates", AIAA J., 51(8), 1861-1871. https://doi.org/10.2514/1.J052399
- Grover, N., Maiti, D.K. and Singh, B.N. (2013b), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
- Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029
- Kant, T. and Khare, R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40(24), 4477-4499. https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4477::AID-NME229>3.0.CO;2-3
- Kant, T. and Swaminathan, K. (2002), "Analytical solution for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910. https://doi.org/10.1007/s10853-012-6329-y
- Khare, R.K., Kant, T. and Garg, A.K. (2003), "Closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated shallow shells", Compos. Struct., 59(3), 313-340. https://doi.org/10.1016/S0263-8223(02)00245-3
- Khdeir, A.A. and Reddy, J.N. (1991), "Thermal stresses and deflections of crossply laminated plates using refined plate theories", J. Therm. Stresses, 14(4), 419-438. https://doi.org/10.1080/01495739108927077
- Maiti, D.K. and Sinha, P.K. (1994), "Bending, free vibration and impact response of thick laminated composite plates", Compos. Struct., 49(0), 115-129.
- Mantari, J.L. and Ore, M. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", Compos. Struct., 22(4), 713-732.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
- Mechab, B., Mechab, I. and Benaissa, S. (2012), "Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading", Compos. Part B Eng., 43(3), 1453-1458. https://doi.org/10.1016/j.compositesb.2011.11.037
- Meiche, N.E., Tounsi, A., Zlane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
- Merdaci, S., Tounsi, A. and Bakora, Y. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., Int. J., 18(4), 1063-1081.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., Trans. ASME, 18(1), 31-38.
- Pai, P.F. (1995), "A new look at shear correction factors and warping functions of anisotropic laminates", Int. J. Solids Struct., 32(16), 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X
- Panduro, R.M.R. and Mantari, J.L. (2017), "Hygro-thermo-mechanical behavior of classical composites", Ocean Eng., 137, 224-240. https://doi.org/10.1016/j.oceaneng.2017.03.049
- Ramos, I.A., Mantari, J.L. and Zenkour, A.M. (2016), "Laminated composite plates subject tothermal load using trigonometric theory based on Carrera Unified Formulation", Compos. Struct., 143, 324-335. https://doi.org/10.1016/j.compstruct.2016.02.020
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock Vib. Dig., 22(7), 3- 17. https://doi.org/10.1177/058310249002200703
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plate: Theory and Analysis, CRC Press, New York, NY, USA.
- Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3(4), 475-493. https://doi.org/10.1080/01495738008926984
- Reddy, J.N. and Robbins, D.H. Jr. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47(6), 147-169. https://doi.org/10.1115/1.3111076
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., Trans. ASME, 12(2), 69-77.
- Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043
- Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002
- Shimpi, R.P. and Patel, H.G. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound. Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
- Shimpi, R.P., Arya, H. and Naik, N.K. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Compos., 22(18), 1667-1688. https://doi.org/10.1177/073168403027618
- Singh, B.N. and Grover, N. (2013), "Stochastic methods for the analysis of uncertain composites", J. Ind. Instt. Sci. A Multidisciplinary Rev. J., 93(4), 603-620.
- Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25, 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
- Talha, M, and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
- Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T. and Xuan, H.N. (2015), "Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory", Eur. J. Mech. A/Solids., 43, 89-108.
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Bedia, E.A.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aero. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Wu, C.H. and Tauchert, T.R. (1980), "Thermoelastic analysis of laminated plates. 2: antisymmetric cross-ply and angle-ply laminates", J. Therm. Stresses, 3(3), 65-78.
- Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading", Compos. Struct., 65(3-4), 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
- Zenkour, A.M. (2013), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Model., 37(20-21), 9041-9051. https://doi.org/10.1016/j.apm.2013.04.022
- Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014