Acknowledgement
Supported by : National Natural Science Foundation of China
References
- A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl. 394 (2012), no. 2, 781-795. https://doi.org/10.1016/j.jmaa.2012.04.043
- Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
- D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhauser, Springer, Heidelberg, 2013.
-
D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable
$L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223-238. -
D. Cruz-Uribe, SFO, A. Fiorenza, J. Martell, and C. Perez, The boundedness of classical operators on variable
$L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264. -
L. Diening, Maximal function on generalized Lebesgue spaces
$L^{p({\cdot})}$ , Math. Inequal. Appl. 7 (2004), no. 2, 245-253. - L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657-700. https://doi.org/10.1016/j.bulsci.2003.10.003
- L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
- B. Dong and J. Xu, Variable exponent Herz type Hardy spaces and their applications, Anal. Theory Appl. 31 (2015), no. 4, 321-353.
- D. Drihem and F. Seghiri, Notes on the Herz-type Hardy spaces of variable smoothness and integrability, Math. Inequal. Appl. 19 (2016), no. 1, 145-165.
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. https://doi.org/10.2307/2373450
-
C. Fefferman and E. M. Stein,
$Hp$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215 - V. Guliyev, M. Omarova, and Y. Sawano, Boundedness of intrinsic square functions and their commutators on generalized weighted Orlicz-Morrey spaces, Banach J. Math. Anal. 9 (2015), no. 2, 44-62. https://doi.org/10.15352/bjma/09-2-5
- Y. Han, M.-Y. Lee, and C.-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull. 55 (2012), no. 2, 303-314. https://doi.org/10.4153/CMB-2011-072-7
- P. Harjulehto, P. Hasto, U. V. Le, and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), no. 12, 4551-4574. https://doi.org/10.1016/j.na.2010.02.033
- K.-P. Ho, The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl. 16 (2013), no. 2, 363-373.
- K.-P. Ho, Atomic decompositions of weighted Hardy-Morrey spaces, Hokkaido Math. J. 42 (2013), no. 1, 131-157. https://doi.org/10.14492/hokmj/1362406643
- K.-P. Ho, Intrinsic square functions on Morrey and block spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 995-1010. https://doi.org/10.1007/s40840-016-0330-6
- Y. Hu and Y. Wang, The commutators of intrinsic square functions on weighted Herz spaces, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1421-1437. https://doi.org/10.1007/s40840-015-0223-0
- M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 3, 461-472. https://doi.org/10.1007/s12215-010-0034-y
- M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J. 40 (2010), no. 3, 343-355.
-
O. Kovacik and J. Rakosnik, On spaces
$L^{p(x)}$ and$W^{k,p(x)}$ , Czechoslovak Math. J. 41 (1991), 592-618. - A. K. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math. 226 (2011), no. 5, 3912-3926. https://doi.org/10.1016/j.aim.2010.11.009
- Y. Liang and D. Yang, Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3225-3256. https://doi.org/10.1090/S0002-9947-2014-06180-1
- S. Lu and L. Xu, Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J. 34 (2005), no. 2, 299-314. https://doi.org/10.14492/hokmj/1285766224
- S. Lu, D. Yang, and G. Hu, Herz Type Spaces and Their Applications, Science Press, Beijing, 2008.
- Y. Lu and Y. P. Zhu, Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents, Czechoslovak Math. J. 64(139) (2014), no. 4, 969-987. https://doi.org/10.1007/s10587-014-0147-0
- E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/j.jfa.2012.01.004
-
A. Nekvinda, Hardy-Littlewood maximal operator on
$L^{p(x)}$ (${\mathbb{R}}$ ), Math. Inequal. Appl. 7 (2004), no. 2, 255-265. - M. Ruzicka, Electrorheological Fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
- J. Tan, Z. Liu, and J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal. 11 (2017), no. 3, 715-734.
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, 123, Academic Press, Inc., Orlando, FL, 1986.
- H. Wang, Intrinsic square functions on the weighted Morrey spaces, J. Math. Anal. Appl. 396 (2012), no. 1, 302-314. https://doi.org/10.1016/j.jmaa.2012.06.021
- H. Wang, Endpoint estimates for commutators of intrinsic square functions in Morrey type spaces, Math. Inequal. Appl. 18 (2015), no. 3, 801-826.
- H. Wang, Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent, J. Korean Math. Soc. 54 (2017), no. 3, 713-732. https://doi.org/10.4134/JKMS.j150771
- H. Wang and H. Liu, The intrinsic square function characterizations of weighted Hardy spaces, Illinois J. Math. 56 (2012), no. 2, 367-381.
- H. Wang and Z. Liu, The Herz-type Hardy spaces with variable exponent and their applications, Taiwanese J. Math. 16 (2012), no. 4, 1363-1389. https://doi.org/10.11650/twjm/1500406739
- M. Wilson, The intrinsic square function, Rev. Mat. Iberoam. 23 (2007), no. 3, 771-791.
- M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square integrability, Lecture Notes in Mathematics, 1924, Springer, Berlin, 2008.
- X. Yan, D. Yang, W. Yuan, and C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), no. 10, 2822-2887. https://doi.org/10.1016/j.jfa.2016.07.006
- D. Yang, C. Zhuo, and E. Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms, Rev. Mat. Complut. 29 (2016), no. 2, 245-270. https://doi.org/10.1007/s13163-016-0188-z
- D. Yang, C. Zhuo, and W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal. 9 (2015), no. 4, 146-202. https://doi.org/10.15352/bjma/09-4-9
- D. Yang, C. Zhuo, and W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal. 269 (2015), no. 6, 1840-1898. https://doi.org/10.1016/j.jfa.2015.05.016
- C. Zhuo, Y. Sawano, and D. Yang, Hardy spaces with variable exponents on RD-spaces and applications, Dissertationes Math. (Rozprawy Mat.) 520 (2016), 74 pp.
- C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541-1577. https://doi.org/10.1007/s40840-015-0266-2