DOI QR코드

DOI QR Code

A NEW TYPE OF TUBULAR SURFACE HAVING POINTWISE 1-TYPE GAUSS MAP IN EUCLIDEAN 4-SPACE 𝔼4

  • Kisi, Ilim (Department of Mathematics Kocaeli University) ;
  • Ozturk, Gunay (Department of Mathematics Arts and Science Faculty Izmir Democracy University)
  • Received : 2017.08.09
  • Accepted : 2017.12.15
  • Published : 2018.07.01

Abstract

In this paper, we handle the Gauss map of a tubular surface which is constructed according to the parallel transport frame of its spine curve. We show that there is no tubular surface having harmonic Gauss map. Moreover, we give a complete classification of this kind of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space ${\mathbb{E}}^4$.

Keywords

References

  1. F. K. Aksoyak and Y. Yayli, General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space $E^4_2$, Indian J. Pure Appl. Math. 46 (2015), no. 1, 107-118. https://doi.org/10.1007/s13226-015-0112-0
  2. K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Rotational embeddings in ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Turkish J. Math. 35 (2011), no. 3, 493-499. https://doi.org/10.3906/mat-0910-59
  3. K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Vranceanu surface in ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Indian J. Pure Appl. Math. 42 (2011), no. 1, 41-51. https://doi.org/10.1007/s13226-011-0003-y
  4. K. Arslan, B. Bulca, B. Klc, Y. H. Kim, C. Murathan, and G. Ozturk, Tensor product surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 48 (2011), no. 3, 601-609. https://doi.org/10.4134/BKMS.2011.48.3.601
  5. K. Arslan, B. Bulca, and V. Milousheva, Meridian surfaces in ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 51 (2014), no. 3, 911-922. https://doi.org/10.4134/BKMS.2014.51.3.911
  6. K. Arslan and V. Milousheva, Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math. 20 (2016), no. 2, 311-332. https://doi.org/10.11650/tjm.20.2016.5722
  7. C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359. https://doi.org/10.1017/S0017089500008946
  8. C. Baikoussis, B.-Y. Chen, and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), no. 2, 341-349. https://doi.org/10.3836/tjm/1270128488
  9. C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2(16) (1993), 31-42.
  10. R. L. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (1975), 246-251. https://doi.org/10.1080/00029890.1975.11993807
  11. B. Bulca, A Characterization of Surfaces in $E^4$, PhD, Uludag University, Bursa, Turkey, 2012.
  12. B. Bulca, K. Arslan, B. Bayram, and G. Ozturk, Canal surfaces in 4-dimensional Euclidean space, An International Journal of Optimization and Control: Theories & Applications 7 (2017), no. 1, 83-89.
  13. B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
  14. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, 1984.
  15. B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.
  16. B.-Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983), 17-33.
  17. B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. https://doi.org/10.4134/JKMS.2005.42.3.447
  18. B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. https://doi.org/10.1017/S0004972700013162
  19. M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.
  20. U. Dursun, On spacelike rotational surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 52 (2015), no. 1, 301-312. https://doi.org/10.4134/BKMS.2015.52.1.301
  21. U. Dursun and G. G. Arsan, Surfaces in the Euclidean space ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Hacet. J. Math. Stat. 40 (2011), no. 5, 617-625.
  22. R. T. Farouki and C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Design 7 (1990), no. 1-4, 83-99. https://doi.org/10.1016/0167-8396(90)90023-K
  23. R. T. Farouki and C. A. Neff, Algebraic properties of plane offset curves, Comput. Aided Geom. Design 7 (1990), no. 1-4, 101-127. https://doi.org/10.1016/0167-8396(90)90024-L
  24. F. Gokcelik, Z. Bozkurt, I. Gok, F. N. Ekmekci, and Y. Yayl, Parallel transport frame in 4-dimensional Euclidean space $E^4$, Casp. J. Math. Sci. 3 (2014), no. 1, 91-103.
  25. M. K. Karacan and B. Bukcu, On natural curvatures of Bishop frame, J. Vectorial Relativity 5 (2010), 34-41.
  26. Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), no. 1, 85-96.
  27. Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. https://doi.org/10.1016/S0393-0440(99)00063-7
  28. Y. H. Kim and D. W. Yoon, Classifications of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004), no. 2, 379-396. https://doi.org/10.4134/JKMS.2004.41.2.379
  29. I. Kisi and G. Ozturk, A new approach to canal surface with parallel transport frame, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 2, 1750026, 16 pp.
  30. I. Kisi and G. Ozturk, Tubular surface with pointwise 1-type Gauss map in Euclidean 4-space, under review.
  31. I. Kisi, G. Ozturk, and K. Arslan, A new characterization of canal surfaces with parallel transport frame in Euclidean 4-space $E^4$, arXiv:1502.06947 [math.DG].
  32. A. Niang, Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc. 42 (2005), no. 1, 23-27. https://doi.org/10.4134/BKMS.2005.42.1.023
  33. G. Ozturk, B. Bulca, B. K. Bayram, and K. Arslan, On canal surfaces in $E^3$, Selcuk J. Appl. Math. 11 (2010), no. 2, 103-108.
  34. E. Salkowski, Zur Transformation von Raumkurven, Math. Ann. 66 (1909), no. 4, 517-557. https://doi.org/10.1007/BF01450047
  35. D. W. Yoon, On the Gauss map of translation surfaces in Minkowski 3-space, Taiwanese J. Math. 6 (2002), no. 3, 389-398. https://doi.org/10.11650/twjm/1500558304