References
- M. Adachi and J. Brinkschulte, A global estimate for the Diederich-Fornaess index of weakly pseudoconvex domains, Nagoya Math. J. 220 (2015), 67-80. https://doi.org/10.1215/00277630-3335655
- D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornaess worm, Acta Math. 168 (1992), no. 1-2, 1-10. https://doi.org/10.1007/BF02392975
-
M. Behrens, Plurisubharmonic defining functions of weakly pseudoconvex domains in
$C^2$ , Math. Ann. 270 (1985), no. 2, 285-296. https://doi.org/10.1007/BF01456187 - B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1-10. https://doi.org/10.1007/s002090000099
-
H. P. Boas and E. J. Straube, Sobolev estimates for the
${\bar{\partial}}$ -Neumann operator on domains in$C^n$ admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81-88. https://doi.org/10.1007/BF02571327 -
H. P. Boas and E. J. Straube, de Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the
${\bar{\partial}}$ -Neumann problem, J. Geom. Anal. 3 (1993), no. 3, 225-235. https://doi.org/10.1007/BF02921391 -
D. Catlin, Subelliptic estimates for the
${\bar{\partial}}$ -Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131-191. https://doi.org/10.2307/1971347 - J.-P. Demailly, Mesures de Monge-Ampere et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519-564. https://doi.org/10.1007/BF01161920
- K. Diederich and J. E. Fornaess, Pseudoconvex domains: an example with nontrivial Nebenhulle, Math. Ann. 225 (1977), no. 3, 275-292. https://doi.org/10.1007/BF01425243
- K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129-141. https://doi.org/10.1007/BF01390105
- K. Diederich and J. E. Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), no. 3, 641-662. https://doi.org/10.1215/S0012-7094-77-04427-1
-
J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in
${\mathbb{C}}^2$ , Math. Z. 257 (2007), no. 4, 769-781. https://doi.org/10.1007/s00209-007-0143-2 -
J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in
${\mathbb{C}}^n$ , Math. Ann. 342 (2008), no. 4, 749-772. https://doi.org/10.1007/s00208-008-0255-y - S. Fu and M.-C. Shaw, The Diederich-Fornaess exponent and non-existence of Stein domains with Levi-flat boundaries, J. Geom. Anal. 26 (2016), no. 1, 220-230. https://doi.org/10.1007/s12220-014-9546-6
- P. S. Harrington, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett. 15 (2008), no. 3, 485-490. https://doi.org/10.4310/MRL.2008.v15.n3.a8
-
P. S. Harrington, Bounded plurisubharmonic exhaustion functions for Lipschitz pseudoconvex domains in
${\mathbb{CP}}^n$ , J. Geom. Anal. 27 (2017), no. 4, 3404-3440. https://doi.org/10.1007/s12220-017-9809-0 - A.-K. Herbig and J. D. McNeal, Convex defining functions for convex domains, J. Geom. Anal. 22 (2012), no. 2, 433-454. https://doi.org/10.1007/s12220-010-9202-8
- A.-K. Herbig and J. D. McNeal, Oka's lemma, convexity, and intermediate positivity conditions, Illinois J. Math. 56 (2012), no. 1, 195-211 (2013).
- N. Kerzman and J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut, Math. Ann. 257 (1981), no. 2, 171-184. https://doi.org/10.1007/BF01458282
- J. J. Kohn, Quantitative estimates for global regularity, in Analysis and geometry in several complex variables (Katata, 1997), 97-128, Trends Math, Birkhauser Boston, Boston, MA, 1999.
- S. G. Krantz and M. M. Peloso, Analysis and geometry on worm domains, J. Geom. Anal. 18 (2008), no. 2, 478-510. https://doi.org/10.1007/s12220-008-9021-3
- J. M. Lee, Introduction to Smooth Manifolds, second edition, Graduate Texts in Mathematics, 218, Springer, New York, 2013.
- J. D. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. (2) 136 (1992), no. 2, 339-360. https://doi.org/10.2307/2946608
- A. Noell, Local and global plurisubharmonic defining functions, Pacific J. Math. 176 (1996), no. 2, 421-426. https://doi.org/10.2140/pjm.1996.176.421
- T. Ohsawa and N. Sibony, Bounded p.s.h. functions and pseudoconvexity in Kahler manifold, Nagoya Math. J. 149 (1998), 1-8. https://doi.org/10.1017/S0027763000006516
- T. Ohsawa and N. Sibony, Kahler identity on Levi flat manifolds and application to the embedding, Nagoya Math. J. 158 (2000), 87-93. https://doi.org/10.1017/S0027763000007315
- P. Petersen, Riemannian Geometry, second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006.
-
S. Pinton and G. Zampieri, The Diederich-Fornaess index and the global regularity of the
${\bar{\partial}}$ -Neumann problem, Math. Z. 276 (2014), no. 1-2, 93-113. https://doi.org/10.1007/s00209-013-1188-z