DOI QR코드

DOI QR Code

GEOMETRIC ANALYSIS ON THE DIEDERICH-FORNÆSS INDEX

  • Received : 2017.08.02
  • Accepted : 2018.01.30
  • Published : 2018.07.01

Abstract

Given bounded pseudoconvex domains in 2-dimensional complex Euclidean space, we derive analytical and geometric conditions which guarantee the Diederich-$Forn{\ae}ss$ index is 1. The analytical condition is independent of strongly pseudoconvex points and extends $Forn{\ae}ss$-Herbig's theorem in 2007. The geometric condition reveals the index reflects topological properties of boundary. The proof uses an idea including differential equations and geometric analysis to find the optimal defining function. We also give a precise domain of which the Diederich-$Forn{\ae}ss$ index is 1. The index of this domain can not be verified by formerly known theorems.

Keywords

References

  1. M. Adachi and J. Brinkschulte, A global estimate for the Diederich-Fornaess index of weakly pseudoconvex domains, Nagoya Math. J. 220 (2015), 67-80. https://doi.org/10.1215/00277630-3335655
  2. D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornaess worm, Acta Math. 168 (1992), no. 1-2, 1-10. https://doi.org/10.1007/BF02392975
  3. M. Behrens, Plurisubharmonic defining functions of weakly pseudoconvex domains in $C^2$, Math. Ann. 270 (1985), no. 2, 285-296. https://doi.org/10.1007/BF01456187
  4. B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1-10. https://doi.org/10.1007/s002090000099
  5. H. P. Boas and E. J. Straube, Sobolev estimates for the ${\bar{\partial}}$-Neumann operator on domains in $C^n$ admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81-88. https://doi.org/10.1007/BF02571327
  6. H. P. Boas and E. J. Straube, de Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the ${\bar{\partial}}$-Neumann problem, J. Geom. Anal. 3 (1993), no. 3, 225-235. https://doi.org/10.1007/BF02921391
  7. D. Catlin, Subelliptic estimates for the ${\bar{\partial}}$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131-191. https://doi.org/10.2307/1971347
  8. J.-P. Demailly, Mesures de Monge-Ampere et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519-564. https://doi.org/10.1007/BF01161920
  9. K. Diederich and J. E. Fornaess, Pseudoconvex domains: an example with nontrivial Nebenhulle, Math. Ann. 225 (1977), no. 3, 275-292. https://doi.org/10.1007/BF01425243
  10. K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129-141. https://doi.org/10.1007/BF01390105
  11. K. Diederich and J. E. Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), no. 3, 641-662. https://doi.org/10.1215/S0012-7094-77-04427-1
  12. J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in ${\mathbb{C}}^2$, Math. Z. 257 (2007), no. 4, 769-781. https://doi.org/10.1007/s00209-007-0143-2
  13. J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in ${\mathbb{C}}^n$, Math. Ann. 342 (2008), no. 4, 749-772. https://doi.org/10.1007/s00208-008-0255-y
  14. S. Fu and M.-C. Shaw, The Diederich-Fornaess exponent and non-existence of Stein domains with Levi-flat boundaries, J. Geom. Anal. 26 (2016), no. 1, 220-230. https://doi.org/10.1007/s12220-014-9546-6
  15. P. S. Harrington, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett. 15 (2008), no. 3, 485-490. https://doi.org/10.4310/MRL.2008.v15.n3.a8
  16. P. S. Harrington, Bounded plurisubharmonic exhaustion functions for Lipschitz pseudoconvex domains in ${\mathbb{CP}}^n$, J. Geom. Anal. 27 (2017), no. 4, 3404-3440. https://doi.org/10.1007/s12220-017-9809-0
  17. A.-K. Herbig and J. D. McNeal, Convex defining functions for convex domains, J. Geom. Anal. 22 (2012), no. 2, 433-454. https://doi.org/10.1007/s12220-010-9202-8
  18. A.-K. Herbig and J. D. McNeal, Oka's lemma, convexity, and intermediate positivity conditions, Illinois J. Math. 56 (2012), no. 1, 195-211 (2013).
  19. N. Kerzman and J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut, Math. Ann. 257 (1981), no. 2, 171-184. https://doi.org/10.1007/BF01458282
  20. J. J. Kohn, Quantitative estimates for global regularity, in Analysis and geometry in several complex variables (Katata, 1997), 97-128, Trends Math, Birkhauser Boston, Boston, MA, 1999.
  21. S. G. Krantz and M. M. Peloso, Analysis and geometry on worm domains, J. Geom. Anal. 18 (2008), no. 2, 478-510. https://doi.org/10.1007/s12220-008-9021-3
  22. J. M. Lee, Introduction to Smooth Manifolds, second edition, Graduate Texts in Mathematics, 218, Springer, New York, 2013.
  23. J. D. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. (2) 136 (1992), no. 2, 339-360. https://doi.org/10.2307/2946608
  24. A. Noell, Local and global plurisubharmonic defining functions, Pacific J. Math. 176 (1996), no. 2, 421-426. https://doi.org/10.2140/pjm.1996.176.421
  25. T. Ohsawa and N. Sibony, Bounded p.s.h. functions and pseudoconvexity in Kahler manifold, Nagoya Math. J. 149 (1998), 1-8. https://doi.org/10.1017/S0027763000006516
  26. T. Ohsawa and N. Sibony, Kahler identity on Levi flat manifolds and application to the embedding, Nagoya Math. J. 158 (2000), 87-93. https://doi.org/10.1017/S0027763000007315
  27. P. Petersen, Riemannian Geometry, second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006.
  28. S. Pinton and G. Zampieri, The Diederich-Fornaess index and the global regularity of the ${\bar{\partial}}$-Neumann problem, Math. Z. 276 (2014), no. 1-2, 93-113. https://doi.org/10.1007/s00209-013-1188-z