References
- P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, IVIC, 2007.
- W. Y. Akashi, On the perturbation theory for Fredholm operators, Osaka J. Math. 21 (1984), no. 3, 603-612.
- J. Appell, Measures of noncompactness, condensing operators and fixed points: an application-oriented survey, Fixed Point Theory 6 (2005), no. 2, 157-229.
- K. Astala, On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes No. 29 (1980), 42 pp.
- S. Axler, N. Jewell, and A. Shields, The essential norm of an operator and its adjoint, Trans. Amer. Math. Soc. 261 (1980), no. 1, 159-167. https://doi.org/10.1090/S0002-9947-1980-0576869-9
- J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, Inc., New York, 1980.
- W. Chaker, A. Jeribi, and B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288 (2015), no. 13, 1476-1486. https://doi.org/10.1002/mana.201200007
- J. B. Conway, A Course in Functional Analysis, second edition, Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1990.
- H. O. Cordes and J. P. Labrousse, The invariance of the index in the metric space of closed operators, J. Math. Mech. 12 (1963), 693-719.
- D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987.
- F. Galaz-Fontes, Measures of noncompactness and upper semi-Fredholm perturbation theorems, Proc. Amer. Math. Soc. 118 (1993), no. 3, 891-897. https://doi.org/10.1090/S0002-9939-1993-1151810-3
- T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
- B. Krichen, Relative essential spectra involving relative demicompact unbounded linear operators, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 546-556.
- B. Krichen and D. O'Regan, On the class of relatively weakly demicompact nonlinear operators fixed point theory, to appear.
- C. Kuratowski, Topologie. I. Espaces Metrisables, Espaces Complets, Monografie Matematyczne, vol. 20, Warszawa-Wroc law, 1948.
- W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl. 14 (1966), 276-284. https://doi.org/10.1016/0022-247X(66)90027-8
- W. V. Petryshyn, Remarks on condensing and k-set-contractive mappings, J. Math. Anal. Appl. 39 (1972), 717-741. https://doi.org/10.1016/0022-247X(72)90194-1
- V. Rakocevic, Measures of noncompactnessand some applications, University of Nis, Faculty of Sciences and Mathematics 12 (1998), 87-120.
- M. Schechter, Principles of Functional Analysis, second edition, Graduate Studies in Mathematics, 36, American Mathematical Society, Providence, RI, 2002.
- V. Williams, Closed Fredholm and semi-Fredholm operators, essential spectra and perturbations, J. Functional Analysis 20 (1975), no. 1, 1-25. https://doi.org/10.1016/0022-1236(75)90050-6