DOI QR코드

DOI QR Code

EXTENSIONS OF NAGATA'S THEOREM

  • Hamed, Ahmed (Department of Mathematics Faculty of Sciences)
  • Received : 2017.06.16
  • Accepted : 2017.10.25
  • Published : 2018.07.01

Abstract

In [1], the authors generalize the concept of the class group of an integral domain $D(Cl_t(D))$ by introducing the notion of the S-class group of an integral domain where S is a multiplicative subset of D. The S-class group of D, $S-Cl_t(D)$, is the group of fractional t-invertible t-ideals of D under the t-multiplication modulo its subgroup of S-principal t-invertible t-ideals of D. In this paper we study when $S-Cl_t(D){\simeq}S-Cl_t(D_T)$, where T is a multiplicative subset generated by prime elements of D. We show that if D is a Mori domain, T a multiplicative subset generated by prime elements of D and S a multiplicative subset of D, then the natural homomorphism $S-Cl_t(D){\rightarrow}S-Cl_t(D_T)$ is an isomorphism. In particular, we give an S-version of Nagata's Theorem [13]: Let D be a Krull domain, T a multiplicative subset generated by prime elements of D and S another multiplicative subset of D. If $D_T$ is an S-factorial domain, then D is an S-factorial domain.

Keywords

References

  1. H. Ahmed and H. Sana, On the class group and S-class group of formal power series rings, J. Pure Appl. Algebra 221 (2017), no. 11, 2869-2879. https://doi.org/10.1016/j.jpaa.2017.02.007
  2. D. D. Anderson and D. F. Anderson, Some remarks on star operations and the class group, J. Pure Appl. Algebra 51 (1988), no. 1-2, 27-33. https://doi.org/10.1016/0022-4049(88)90075-8
  3. D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
  4. D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings, Comm. Algebra 26 (1998), no. 10, 3223-3238. https://doi.org/10.1080/00927879808826338
  5. A. Bouvier, Le groupe des classes d'un anneau integre, 107eme Congres des Societes Savantes, Brest., (1982), 85-92.
  6. A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grece (N.S.) 29 (1988), 45-59.
  7. D. Nour El Abidine, Sur le groupe des classes d'un anneau integre, Ann. Univ. Ferrara Sez. VII (N.S.) 36 (1990), 175-183 (1991).
  8. M. Fontana, J. A. Huckaba, and I. J. Papick, Prufer domains, Monographs and Text-books in Pure and Applied Mathematics, 203, Marcel Dekker, Inc., New York, 1997.
  9. R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
  10. S. Gabelli and M. Roitman, On Nagata's theorem for the class group, J. Pure Appl. Algebra 66 (1990), no. 1, 31-42. https://doi.org/10.1016/0022-4049(90)90122-X
  11. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  12. H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332. https://doi.org/10.1016/j.jalgebra.2014.06.015
  13. M. Nagata, A remark on the unique factorization theorem, J. Math. Soc. Japan 9 (1957), 143-145. https://doi.org/10.2969/jmsj/00910143
  14. J. Querre, Sur une propiete des anneaux de Krull, Bull. Sci. Math. (2) 95 (1971), 341-354.