과제정보
연구 과제 주관 기관 : NRF (Korea)
참고문헌
-
J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in
${\mathbb{P}^n}$ and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417. https://doi.org/10.4134/JKMS.2012.49.2.405 - E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. https://doi.org/10.1016/j.jalgebra.2014.02.013
- E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192. https://doi.org/10.1090/S0002-9939-2011-11204-8
-
M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Habourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties to the varieties of reducible hypersurfaces in
${\mathbb{P}^n}$ , J. of Alg. Geo. submitted. - M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423-443. https://doi.org/10.1007/s10231-014-0470-y
-
A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in
${\mathbb{P}^n}$ , J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034 - A. V. Geramita, B. Harbourne, J. C. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, In preparation.
- A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
- A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119. https://doi.org/10.1006/aima.1998.1889
-
A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in
${\mathbb{P}^2}$ , J. Algebra 298 (2006), no. 2, 563-611. https://doi.org/10.1016/j.jalgebra.2006.01.035 -
A. V. Geramita and Y. S. Shin, k-configurations in
${\mathbb{P}^3}$ all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368. https://doi.org/10.1006/jabr.1998.7651 - T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324. https://doi.org/10.1016/0022-4049(95)00109-A
- T. Harima, T. Maeno, H. Morita, Y. Numata, A.Wachi, and J.Watanabe, The Lefschetz Properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013.
- T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126. https://doi.org/10.1016/S0021-8693(03)00038-3
-
Y. R. Kim and Y. S. Shin, Star-configurations in
${\mathbb{P}^n}$ and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873. https://doi.org/10.1080/00927872.2015.1027373 - J. Migliore and R. Miro-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107. https://doi.org/10.1016/S0022-4049(02)00314-6
- J. Migliore and R. Miro-Roig, On the strong Lefschetz problem for uniform powers of general linear forms in k[x, y, z], Proc. Amer. Math. Soc. 146 (2018), no. 2, 507-523.
- J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358. https://doi.org/10.1216/JCA-2013-5-3-329
-
J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in
${\mathbb{P}^n}$ , J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026 - Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
-
Y. S. Shin, Star-configurations in
${\mathbb{P}^2}$ having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242. https://doi.org/10.1080/00927872.2012.656783 -
Y. S. Shin, Some application of the union of two
${\mathbb{k}}$ -configurations in${\mathbb{P}^2}$ , J. of Chungcheong Math. Soc. 27 (2014), no. 3, 413-418. https://doi.org/10.14403/jcms.2014.27.3.413