DOI QR코드

DOI QR Code

Validation of Neurotensin Receptor 1 as a Therapeutic Target for Gastric Cancer

  • Akter, Hafeza (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jung Hwan (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Yoo, Young Sook (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Kang, Min-Jung (Molecular Recognition Research Center, Korea Institute of Science and Technology)
  • Received : 2018.01.08
  • Accepted : 2018.03.20
  • Published : 2018.06.30

Abstract

Gastric cancer is the fifth most common type of malignancy worldwide, and the survival rate of patients with advanced-stage gastric cancer is low, even after receiving chemotherapy. Here, we validated neurotensin receptor 1 (NTSR1) as a potential therapeutic target in gastric cancer. We compared NTSR1 expression levels in sixty different gastric cancer-tissue samples and cells, as well as in other cancer cells (lung, breast, pancreatic, and colon), by assessing NTSR1 expression via semi-quantitative real-time reverse transcription polymerase chain reaction, immunocytochemistry and western blot. Following neurotensin (NT) treatment, we analyzed the expression and activity of matrix metalloproteinase-9 (MMP-9) and further determined the effects on cell migration and invasion via wound-healing and transwell assays. Our results revealed that NTSR1 mRNA levels were higher in gastric cancer tissues than non-cancerous tissues. Both of NTSR1 mRNA levels and expression were higher in gastric cancer cell lines relative to levels observed in other cancer-cell lines. Moreover, NT treatment induced MMP-9 expression and activity in all cancer cell lines, which was significantly decreased following treatment with the NTSR1 antagonist SR48692 or small-interfering RNA targeting NTSR1. Furthermore, NT-mediated metastases was confirmed by observing epithelial-mesenchymal transition markers SNAIL and E-cadherin in gastric cancer cells. NT-mediated invasion and migration of gastric cancer cells were reduced by NTSR1 depletion through the Erk signaling. These findings strongly suggested that NTR1 constitutes a potential therapeutic target for the inhibition of gastric cancer invasion and metastasis.

Keywords

References

  1. Aalinkeel, R., Nair, B.B., Reynolds, J.L., Sykes, D.E., Mahajan, S.D., Chadha, K.C., and Schwartz, S.A. (2011). Overexpression of MMP-9 contributes to invasiveness of prostate cancer cell line LNCaP. Immunol. Invest. 40, 447-464. https://doi.org/10.3109/08820139.2011.557795
  2. Abrahao-Machado, L.F., and Scapulatempo-Neto, C. (2016). HER2 testing in gastric cancer: An update. World J. Gastroenterol. 22, 4619-4625. https://doi.org/10.3748/wjg.v22.i19.4619
  3. Akter, H., Park, M., Kwon, O.S., Song, E.J., Park, W.S., and Kang, M.J. (2015). Activation of matrix metalloproteinase-9 (MMP-9) by neurotensin promotes cell invasion and migration through ERK pathway in gastric cancer. Tumour Biol. 36, 6053-6062. https://doi.org/10.1007/s13277-015-3282-9
  4. Al-Batran, S.E., Pauligk, C., Wirtz, R., Werner, D., Steinmetz, K., Homann, N., Schmalenberg, H., Hofheinz, R.D., Hartmann, J.T., Atmaca, A., et al. (2012). The validation of matrix metalloproteinase-9 mRNA gene expression as a predictor of outcome in patients with metastatic gastric cancer. Ann. Oncol. 23, 1699-1705. https://doi.org/10.1093/annonc/mdr552
  5. Alifano, M., Souaze, F., Dupouy, S., Camilleri-Broet, S., Younes, M., Ahmed-Zaid, S.M., Takahashi, T., Cancellieri, A., Damiani, S., Boaron, M., et al. (2010). Neurotensin receptor 1 determines the outcome of non-small cell lung cancer. Clin. Cancer Res. 16, 4401-4410. https://doi.org/10.1158/1078-0432.CCR-10-0659
  6. Bakirtzi, K., Hatziapostolou, M., Karagiannides, I., Polytarchou, C., Jaeger, S., Iliopoulos, D., and Pothoulakis, C. (2011). Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141, 1749-1761.e1741. https://doi.org/10.1053/j.gastro.2011.07.038
  7. Bang, Y.J., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro, Y., Satoh, T., et al. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA).: a phase 3, open-label, randomised controlled trial. Lancet 376, 687-697. https://doi.org/10.1016/S0140-6736(10)61121-X
  8. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607. https://doi.org/10.1038/nature11003
  9. Carraway, R.E., and Plona, A.M. (2006). Involvement of neurotensin in cancer growth: evidence, mechanisms and development of diagnostic tools. Peptides 27, 2445-2460. https://doi.org/10.1016/j.peptides.2006.04.030
  10. Correa, P. (1996). Helicobacter pylori and gastric cancer: state of the art. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 5, 477-481.
  11. Dupouy, S., Doan, V.K., Wu, Z., Mourra, N., Liu, J., De Wever, O., Llorca, F.P., Cayre, A., Kouchkar, A., Gompel, A., et al. (2014). Activation of EGFR, HER2 and HER3 by neurotensin/neurotensin receptor 1 renders breast tumors aggressive yet highly responsive to lapatinib and metformin in mice. Oncotarget 5, 8235-8251.
  12. Dupouy, S., Viardot-Foucault, V., Alifano, M., Souaze, F., Plu-Bureau, G., Chaouat, M., Lavaur, A., Hugol, D., Gespach, C., Gompel, A., et al. (2009). The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression. PloS one 4, e4223. https://doi.org/10.1371/journal.pone.0004223
  13. Elek, J., Pinzon, W., Park, K.H., and Narayanan, R. (2000). Relevant genomics of neurotensin receptor in cancer. Anticancer Res. 20, 53-58.
  14. Evers, B.M. (2006). Neurotensin and growth of normal and neoplastic tissues. Peptides 27, 2424-2433. https://doi.org/10.1016/j.peptides.2006.01.028
  15. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359-386. https://doi.org/10.1002/ijc.29210
  16. Groblewska, M., Siewko, M., Mroczko, B., and Szmitkowski, M. (2012). The role of matrix metalloproteinases (MMPs)., and their inhibitors (TIMPs). in the development of esophageal cancer. Folia Histochemica et Cytobiologica 50, 12-19. https://doi.org/10.5603/FHC.2012.0002
  17. Guha, S., Rey, O., and Rozengurt, E. (2002). Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Res. 62, 1632-1640.
  18. Hasan, M., Seo, J.E., Rahaman, K.A., Kang, M.J., Jung, B.H., and Kwon, O.S. (2016). Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE). in obese mice. Neuroscience 319, 168-182. https://doi.org/10.1016/j.neuroscience.2016.01.045
  19. Hwang, T.L., Changchien, T.T., Wang, C.C., and Wu, C.M. (2014). Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression. Oncol. Lett. 8, 1367-1371. https://doi.org/10.3892/ol.2014.2295
  20. Kang, M.H., Kim, J.S., Seo, J.E., Oh, S.C., and Yoo, Y.A. (2010). BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp. Cell Res. 316, 24-37. https://doi.org/10.1016/j.yexcr.2009.10.010
  21. Kim, Y.M., Ku, M.J., Son, Y.J., Yun, J.M., Kim, S.H., and Lee, S.Y. (2013). Anti-metastatic effect of cantharidin in A549 human lung cancer cells. Arch. Pharm. Res. 36, 479-484. https://doi.org/10.1007/s12272-013-0044-3
  22. Knall, C., Young, S., Nick, J.A., Buhl, A.M., Worthen, G.S., and Johnson, G.L. (1996). Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J. Biol. Chem. 271, 2832-2838. https://doi.org/10.1074/jbc.271.5.2832
  23. Leifler, K.S., Svensson, S., Abrahamsson, A., Bendrik, C., Robertson, J., Gauldie, J., Olsson, A.K., and Dabrosin, C. (2013). Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J. Immunol. 190, 4420-4430. https://doi.org/10.4049/jimmunol.1202610
  24. Li, H., Zhang, K., Liu, L.H., Ouyang, Y., Bu, J., Guo, H.B., and Xiao, T. (2014). A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumour Biol. 35, 5487-5491. https://doi.org/10.1007/s13277-014-1717-3
  25. Maatta, M., Soini, Y., Liakka, A., and Autio-Harmainen, H. (2000). Differential expression of matrix metalloproteinase (MMP).-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin. Cancer Res. 6, 2726-2734.
  26. Muller, K.M., Tveteraas, I.H., Aasrum, M., Odegard, J., Dawood, M., Dajani, O., Christoffersen, T., and Sandnes, D.L. (2011). Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer 11, 421. https://doi.org/10.1186/1471-2407-11-421
  27. Nagarajan, D., Melo, T., Deng, Z., Almeida, C., and Zhao, W. (2012). ERK/GSK3beta/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic. Biol. Med. 52, 983-992. https://doi.org/10.1016/j.freeradbiomed.2011.11.024
  28. Ocejo-Garcia, M., Ahmed, S.I., Coulson, J.M., and Woll, P.J. (2001). Use of RT-PCR to detect co-expression of neuropeptides and their receptors in lung cancer. Lung Cancer (Amsterdam, Netherlands) 33, 1-9. https://doi.org/10.1016/S0169-5002(00)00248-8
  29. Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. https://doi.org/10.1093/nar/29.9.e45
  30. Pryczynicz, A., Guzinska-Ustymowicz, K., Dymicka-Piekarska, V., Czyzewska, J., and Kemona, A. (2007). Expression of matrix metalloproteinase 9 in pancreatic ductal carcinoma is associated with tumor metastasis formation. Folia histochemica et cytobiologica 45, 37-40.
  31. Rovere, C., Barbero, P., Maoret, J.J., Laburthe, M., and Kitabgi, P. (1998). Pro-neurotensin/neuromedin N expression and processing in human colon cancer cell lines. Biochem. Biophys. Res. Commun. 246, 155-159. https://doi.org/10.1006/bbrc.1998.8506
  32. Seethalakshmi, L., Mitra, S.P., Dobner, P.R., Menon, M., and Carraway, R.E. (1997). Neurotensin receptor expression in prostate cancer cell line and growth effect of NT at physiological concentrations. Prostate 31, 183-192. https://doi.org/10.1002/(SICI)1097-0045(19970515)31:3<183::AID-PROS7>3.0.CO;2-M
  33. Shimizu, S., Tsukada, J., Sugimoto, T., Kikkawa, N., Sasaki, K., Chazono, H., Hanazawa, T., Okamoto, Y., and Seki, N. (2008). Identification of a novel therapeutic target for head and neck squamous cell carcinomas: a role for the neurotensin-neurotensin receptor 1 oncogenic signaling pathway. Int. J. Cancer 123, 1816-1823. https://doi.org/10.1002/ijc.23710
  34. Sier, C.F., Kubben, F.J., Ganesh, S., Heerding, M.M., Griffioen, G., Hanemaaijer, R., van Krieken, J.H., Lamers, C.B., and Verspaget, H.W. (1996). Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Brit. J. Cancer 74, 413-417. https://doi.org/10.1038/bjc.1996.374
  35. Sillem, M., Prifti, S., Koumouridis, A., and Runnebaum, B. (1999). Invasiveness corresponds to differentiation rather than to proteinase secretion in endometrial cancer cell lines. Eur. J. Gynaecol. Oncol. 20, 367-370.
  36. Souaze, F., Dupouy, S., Viardot-Foucault, V., Bruyneel, E., Attoub, S., Gespach, C., Gompel, A., and Forgez, P. (2006). Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression. Cancer Res. 66, 6243-6249. https://doi.org/10.1158/0008-5472.CAN-06-0450
  37. Valerie, N.C., Casarez, E.V., Dasilva, J.O., Dunlap-Brown, M.E., Parsons, S.J., Amorino, G.P., and Dziegielewski, J. (2011). Inhibition of neurotensin receptor 1 selectively sensitizes prostate cancer to ionizing radiation. Cancer Res. 71, 6817-6826. https://doi.org/10.1158/0008-5472.CAN-11-1646
  38. Venkatakrishnan, G., Salgia, R., and Groopman, J.E. (2000). Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells. J. Biol. Chem. 275, 6868-6875. https://doi.org/10.1074/jbc.275.10.6868
  39. Vincent, J.P., Mazella, J., and Kitabgi, P. (1999). Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 20, 302-309. https://doi.org/10.1016/S0165-6147(99)01357-7
  40. Wagner, A.D., Grothe, W., Haerting, J., Kleber, G., Grothey, A., and Fleig, W.E. (2006). Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data. J. Clin. Oncol. 24, 2903-2909. https://doi.org/10.1200/JCO.2005.05.0245
  41. Wang, A.X., and Qi, X.Y. (2013). Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma. IUBMB life 65, 748-758. https://doi.org/10.1002/iub.1193
  42. Wang, J.G., Li, N.N., Li, H.N., Cui, L., and Wang, P. (2011). Pancreatic cancer bears overexpression of neurotensin and neurotensin receptor subtype-1 and SR 48692 counteracts neurotensin induced cell proliferation in human pancreatic ductal carcinoma cell line PANC-1. Neuropeptides 45, 151-156. https://doi.org/10.1016/j.npep.2011.01.002
  43. Weiss, M.B., Abel, E.V., Mayberry, M.M., Basile, K.J., Berger, A.C., and Aplin, A.E. (2012). TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res. 72, 6382-6392. https://doi.org/10.1158/0008-5472.CAN-12-1033
  44. Yu, J., Ren, X., Chen, Y., Liu, P., Wei, X., Li, H., Ying, G., Chen, K., Winkler, H., and Hao, X. (2013). Dysfunctional activation of neurotensin/IL-8 pathway in hepatocellular carcinoma is associated with increased inflammatory response in microenvironment, more epithelial mesenchymal transition in cancer and worse prognosis in patients. PloS one 8, e56069. https://doi.org/10.1371/journal.pone.0056069
  45. Zhao, D., and Pothoulakis, C. (2006). Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 27, 2434-2444. https://doi.org/10.1016/j.peptides.2005.12.016
  46. Zheng, S., Chang, Y., Hodges, K.B., Sun, Y., Ma, X., Xue, Y., Williamson, S.R., Lopez-Beltran, A., Montironi, R., and Cheng, L. (2010). Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. Anticancer Res. 30, 713-718.

Cited by

  1. Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans vol.42, pp.1, 2018, https://doi.org/10.14348/molcells.2018.0377
  2. The prognostic and therapeutic role of hormones in colorectal cancer: a review vol.46, pp.1, 2018, https://doi.org/10.1007/s11033-018-4528-6
  3. Characterisation of the Expression of Neurotensin and Its Receptors in Human Colorectal Cancer and Its Clinical Implications vol.10, pp.8, 2018, https://doi.org/10.3390/biom10081145
  4. Loganetin and 5‐fluorouracil synergistically inhibit the carcinogenesis of gastric cancer cells via down‐regulation of the Wnt/β‐catenin pathway vol.24, pp.23, 2018, https://doi.org/10.1111/jcmm.15932
  5. Neurotensin pathway in digestive cancers and clinical applications: an overview vol.11, pp.12, 2018, https://doi.org/10.1038/s41419-020-03245-8
  6. Obesity-related gut hormones and cancer: novel insight into the pathophysiology vol.45, pp.9, 2018, https://doi.org/10.1038/s41366-021-00865-8