참고문헌
- Assimakopoulou, M. (2000). Human meningiomas: immunohistochemical localization of progesterone receptor and heat shock protein 27 and absence of estrogen receptor and PS2. Cancer Detect. Prev. 24, 163-168.
- Banerjee, S., Lin, C.F., Skinner, K.A., Schiffhauer, L.M., Peacock, J., Hicks, D.G., Redmond, E.M., Morrow, D., Huston, A., Shayne, M., et al. (2011). Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res. 71, 318-327. https://doi.org/10.1158/0008-5472.CAN-10-1778
- Bao, Y.P., Cook, L.J., O'Donovan, D., Uyama, E., and Rubinsztein, D.C. (2002). Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. J. Biol. Chem. 277, 12263-12269. https://doi.org/10.1074/jbc.M109633200
- Carvalho, K.C., Cunha, I.W., Rocha, R.M., Ayala, F.R., Cajaiba, M.M., Begnami, M.D., Vilela, R.S., Paiva, G.R., Andrade, R.G., and Soares, F.A. (2011). GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo) 66, 965-972. https://doi.org/10.1590/S1807-59322011000600008
- Chen, X.H., Wu, W.G., and Ding, J. (2014). Aberrant TIG1 methylation associated with its decreased expression and clinicopathological significance in hepatocellular carcinoma. Tumour Biol. 35, 967-971. https://doi.org/10.1007/s13277-013-1129-9
- Cheng, H., Cenciarelli, C., Nelkin, G., Tsan, R., Fan, D., Cheng-Mayer, C., and Fidler, I.J. (2005). Molecular mechanism of hTid-1, the human homolog of Drosophila tumor suppressor l(2)Tid, in the regulation of NF-kappaB activity and suppression of tumor growth. Mol. Cell Biol. 25, 44-59. https://doi.org/10.1128/MCB.25.1.44-59.2005
- Ciocca, D.R., and Calderwood, S.K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 10, 86-103. https://doi.org/10.1379/CSC-99r.1
- Clagett-Dame, M., and DeLuca, H.F. (2002). The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347-381. https://doi.org/10.1146/annurev.nutr.22.010402.102745E
- Degos, L., Dombret, H., Chomienne, C., Daniel, M.T., Miclea, J.M., Chastang, C., Castaigne, S., and Fenaux, P. (1995). All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 85, 2643-2653.
- Demand, J., Luders, J., and Hohfeld, J. (1998). The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell Biol. 18, 2023-2028. https://doi.org/10.1128/MCB.18.4.2023
- Edwards, K.M., and Munger, K. (2004). Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23, 8419-8431. https://doi.org/10.1038/sj.onc.1207732
- Guo, F., Sigua, C., Bali, P., George, P., Fiskus, W., Scuto, A., Annavarapu, S., Mouttaki, A., Sondarva, G., Wei, S., et al. (2005). Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 105, 1246-1255.
- Hamelin, C., Cornut, E., Poirier, F., Pons, S., Beaulieu, C., Charrier, J.P., Haidous, H., Cotte, E., Lambert, C., Piard, F., et al. (2011). Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J. 278, 4845-4859. https://doi.org/10.1111/j.1742-4658.2011.08385.x
- Hamrita, B., Chahed, K., Kabbage, M., Guillier, C.L., Trimeche, M., Chaieb, A., and Chouchane, L. (2008). Identification of tumor antigens that elicit a humoral immune response in breast cancer patients' sera by serological proteome analysis (SERPA). Clin. Chim. Acta 393, 95-102. https://doi.org/10.1016/j.cca.2008.03.017
- Huang, L., Yu, Z., Zhang, T., Zhao, X., and Huang, G. (2014). HSP40 interacts with pyruvate kinase M2 and regulates glycolysis and cell proliferation in tumor cells. PLoS One 9, e92949. https://doi.org/10.1371/journal.pone.0092949
- Hwang, Y.J., Lee, S.P., Kim, S.Y., Choi, Y.H., Kim, M.J., Lee, C.H., Lee, J.Y., and Kim, D.Y. (2009). Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med. J. 50, 399-406. https://doi.org/10.3349/ymj.2009.50.3.399
- Ito, N., Kamiguchi, K., Nakanishi, K., Sokolovskya, A., Hirohashi, Y., Tamura, Y., Murai, A., Yamamoto, E., Kanaseki, T., Tsukahara, T., et al. (2016). A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem. Biophys. Res. Commun. 474, 626-633. https://doi.org/10.1016/j.bbrc.2016.03.152
- Jing, C., El-Ghany, M.A., Beesley, C., Foster, C.S., Rudland, P.S., Smith, P., and Ke, Y. (2002). Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J. Natl. Cancer Inst. 94, 482-490. https://doi.org/10.1093/jnci/94.7.482
- Kim, S.W., Chao, T.H., Xiang, R., Lo, J.F., Campbell, M.J., Fearns, C., and Lee, J.D. (2004). Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res. 64, 7732-7739. https://doi.org/10.1158/0008-5472.CAN-04-1323
- Kim, S.W., Hayashi, M., Lo, J.F., Fearns, C., Xiang, R., Lazennec, G., Yang, Y., and Lee, J.D. (2005). Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res. 65, 8784-8791. https://doi.org/10.1158/0008-5472.CAN-04-4422
- Kwok, W.K., Pang, J.C., Lo, K.W., and Ng, H.K. (2009). Role of the RARRES1 gene in nasopharyngeal carcinoma. Cancer Genet. Cytogenet. 194, 58-64. https://doi.org/10.1016/j.cancergencyto.2009.06.005
- Lee, Y.M., Lee, J.O., Jung, J.H., Kim, J.H., Park, S.H., Park, J.M., Kim, E.K., Suh, P.G., and Kim, H.S. (2008). Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J. Biol. Chem. 283, 33969-33974. https://doi.org/10.1074/jbc.M804469200
- Li, C., Zhang, G., Zhao, L., Ma, Z., and Chen, H. (2016). Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol. 14, 15.
- Maehara, Y., Oki, E., Abe, T., Tokunaga, E., Shibahara, K., Kakeji, Y., and Sugimachi, K. (2000). Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. Oncology 58, 144-151. https://doi.org/10.1159/000012091
- Medina, R.A., and Owen, G.I. (2002). Glucose transporters: expression, regulation and cancer. Biol Res. 35, 9-26.
- Mitra, A., Shevde, L.A., and Samant, R.S. (2009). Multi-faceted role of HSP40 in cancer. Clin. Exp. Metastasis. 26, 559-567. https://doi.org/10.1007/s10585-009-9255-x
- Miyake, H., Muramaki, M., Kurahashi, T., Yamanaka, K., Hara, I., and Fujisawa, M. (2006). Enhanced expression of heat shock protein 27 following neoadjuvant hormonal therapy is associated with poor clinical outcome in patients undergoing radical prostatectomy for prostate cancer. Anticancer Res. 26, 1583-1587.
- Mizuiri, H., Yoshida, K., Toge, T., Oue, N., Aung, P.P., Noguchi, T., and Yasui, W. (2005). DNA methylation of genes linked to retinoid signaling in squamous cell carcinoma of the esophagus: DNA methylation of CRBP1 and TIG1 is associated with tumor stage. Cancer Sci. 96, 571-577. https://doi.org/10.1111/j.1349-7006.2005.00082.x
- Mueckler, M., and Thorens, B. (2013). The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121-138. https://doi.org/10.1016/j.mam.2012.07.001
- Murphy, M.E. (2013). The HSP70 family and cancer. Carcinogenesis. 34, 1181-1188. https://doi.org/10.1093/carcin/bgt111
- Nagpal, S., Patel, S., Asano, A.T., Johnson, A.T., Duvic, M., and Chandraratna, R.A. (1996). Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J. Invest. Dermatol. 106, 269-274. https://doi.org/10.1111/1523-1747.ep12340668
- Oka, M., Sato, S., Soda, H., Fukuda, M., Kawabata, S., Nakatomi, K., Shiozawa, K., Nakamura, Y., Ohtsuka, K., and Kohno, S. (2001). Autoantibody to heat shock protein Hsp40 in sera of lung cancer patients. Jpn. J. Cancer Res. 92, 316-320. https://doi.org/10.1111/j.1349-7006.2001.tb01097.x
- Peng, Z., Shen, R., Li, Y.W., Teng, K.Y., Shapiro, C.L., and Lin, H.J. (2012). Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PLoS One 7, e36891. https://doi.org/10.1371/journal.pone.0036891
- Qiu, X.B., Shao, Y.M., Miao, S., and Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63, 2560-2570. https://doi.org/10.1007/s00018-006-6192-6
- Salani, B., Ravera, S., Amaro, A., Salis, A., Passalacqua, M., Millo, E., Damonte, G., Marini, C., Pfeffer, U., Sambuceti, G., et al. (2015). IGF1 regulates PKM2 function through Akt phosphorylation. Cell Cycle 14, 1559-1567. https://doi.org/10.1080/15384101.2015.1026490
- Shutoh, M., Oue, N., Aung, P.P., Noguchi, T., Kuraoka, K., Nakayama, H., Kawahara, K., and Yasui, W. (2005). DNA methylation of genes linked with retinoid signaling in gastric carcinoma: expression of the retinoid acid receptor beta, cellular retinol-binding protein 1, and tazarotene-induced gene 1 genes is associated with DNA methylation. Cancer 104, 1609-1619. https://doi.org/10.1002/cncr.21392
- Shyu, R.Y., Wang, C.H., Wu, C.C., Chen, M.L., Lee, M.C., Wang, L.K., Jiang, S.Y., and Tsai, F.M. (2016). Tazarotene-induced gene 1 enhanced cervical cell autophagy through transmembrane protein 192. Mol. Cells 39, 877-887. https://doi.org/10.14348/molcells.2016.0161
- Siddikuzzaman, Guruvayoorappan, C., and Berlin Grace, V.M. (2011). All trans retinoic acid and cancer. Immunopharmacol. Immunotoxicol. 33, 241-249.
- Sterrenberg, J.N., Blatch, G.L., and Edkins, A.L. (2011). Human DNAJ in cancer and stem cells. Cancer Lett. 312, 129-142. https://doi.org/10.1016/j.canlet.2011.08.019
- Syken, J., De-Medina, T., and Munger, K. (1999). TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc. Natl. Acad. Sci. USA 96, 8499-8504. https://doi.org/10.1073/pnas.96.15.8499
- Takai, N., Kawamata, N., Walsh, C.S., Gery, S., Desmond, J.C., Whittaker, S., Said, J.W., Popoviciu, L.M., Jones, P.A., Miyakawa, I., et al. (2005). Discovery of epigenetically masked tumor suppressor genes in endometrial cancer. Mol. Cancer Res. 3, 261-269. https://doi.org/10.1158/1541-7786.MCR-04-0110
- Tsai, F.M., Wu, C.C., Shyu, R.Y., Wang, C.H., and Jiang, S.Y. (2011). Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth. J. Biomed. Sci. 18, 88. https://doi.org/10.1186/1423-0127-18-88
- Wang, X., Saso, H., Iwamoto, T., Xia, W., Gong, Y., Pusztai, L., Woodward, W.A., Reuben, J.M., Warner, S.L., Bearss, D.J., et al. (2013). TIG1 promotes the development and progression of inflammatory breast cancer through activation of Axl kinase. Cancer Res. 73, 6516-6525. https://doi.org/10.1158/0008-5472.CAN-13-0967
- Warburg, O., Wind, F., and Negelein, E. (1927). The metabolism of tumors in the body. J Gen. Physiol. 8, 519-530. https://doi.org/10.1085/jgp.8.6.519
- Whitley, D., Goldberg, S.P., and Jordan, W.D. (1999). Heat shock proteins: a review of the molecular chaperones. J. Vasc. Surg. 29, 748-751. https://doi.org/10.1016/S0741-5214(99)70329-0
- Wu, C.C., Shyu, R.Y., Chou, J.M., Jao, S.W., Chao, P.C., Kang, J.C., Wu, S.T., Huang, S.L., and Jiang, S.Y. (2006). RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. Eur. J. Cancer 42, 557-565. https://doi.org/10.1016/j.ejca.2005.11.015
- Wu, C.C., Tsai, F.M., Shyu, R.Y., Tsai, Y.M., Wang, C.H., and Jiang, S.Y. (2011). G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 11, 175. https://doi.org/10.1186/1471-2407-11-175
- Yan, Y., Li, Z., Xu, X., Chen, C., Wei, W., Fan, M., Chen, X., Li, J.J., Wang, Y., and Huang, J. (2016). All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern. Med. 16, 113. https://doi.org/10.1186/s12906-016-1088-y
- Yanatatsaneejit, P., Chalermchai, T., Kerekhanjanarong, V., Shotelersuk, K., Supiyaphun, P., Mutirangura, A., and Sriuranpong, V. (2008). Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral Oncol. 44, 400-406. https://doi.org/10.1016/j.oraloncology.2007.05.008
- Yang, W., and Lu, Z. (2013). Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 339, 153-158. https://doi.org/10.1016/j.canlet.2013.06.008
- Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F., Lyssiotis, C.A., Aldape, K., Cantley, L.C., and Lu, Z. (2012). ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295-1304. https://doi.org/10.1038/ncb2629
- Yoshidomi, K., Murakami, A., Yakabe, K., Sueoka, K., Nawata, S., and Sugino, N. (2014). Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells. J. Obstet. Gynaecol. Res. 40, 1188-1196. https://doi.org/10.1111/jog.12325
- Yu, M., Yongzhi, H., Chen, S., Luo, X., Lin, Y., Zhou, Y., Jin, H., Hou, B., Deng, Y., Tu, L., et al. (2017). The prognostic value of GLUT1 in cancers: a systematic review and meta-analysis. Oncotarget 8, 43356-43367.
- Zhang, J., Liu, L., and Pfeifer, G.P. (2004). Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene 23, 2241-2249. https://doi.org/10.1038/sj.onc.1207328
피인용 문헌
- Tazarotene-Induced Gene 1 (TIG1) Interacts with Serine Protease Inhibitor Kazal-Type 2 (SPINK2) to Inhibit Cellular Invasion of Testicular Carcinoma Cells vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/6171065
- Fructose-1,6-bisphosphatase 2 represses cervical cancer progression via inhibiting aerobic glycolysis through promoting pyruvate kinase isozyme type M2 ubiquitination vol.33, pp.1, 2018, https://doi.org/10.1097/cad.0000000000001185