References
- Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(4), 954-959. https://doi.org/10.1016/j.physe.2010.11.024
- Ansari, R. and Sahmani, S. (2013), "Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations", Appl. Math. Model., 37(12), 7338-7351. https://doi.org/10.1016/j.apm.2013.03.004
- Ansari, R., Arash, B. and Rouhi, H. (2011), "Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity", Compos. Struct., 93(9), 2419-2429. https://doi.org/10.1016/j.compstruct.2011.04.006
- Arani, A.G., Haghparast, E. and Zarei, H.B. (2016), "Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field", Phys. B: Condens. Matt., 495, 35-49. https://doi.org/10.1016/j.physb.2016.04.039
- Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2016), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
- Ebrahimi, F. and Barati, M.R. (2016), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Therm. Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726
- Ebrahimi, F. and Barati, M.R. (2016), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", J. Mecha. Eng. Sci., 0954406216668912. https://doi.org/10.1177/0954406216668912
- Ebrahimi, F. and Barati, M.R. (2016), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
- Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
- Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electricalfield in thermal environment", J. Vibr. Contr., 1077546316646239. https://doi.org/10.1177/1077546316646239
- Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysisof quasi-3D FG nanobeams in thermal environment based onnonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
- Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
- Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
- Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory", J. Mech. Sci. Technol., 29(9), 3797-3803. https://doi.org/10.1007/s12206-015-0826-2
- Ebrahimi, F. and Shafiei, N. (2016), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 1-41.
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Farajpour, A., Shahidi, A.R., Mohammadi, M. and Mahzoon, M. (2012), "Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics", Compos. Struct., 94(5), 1605-1615. https://doi.org/10.1016/j.compstruct.2011.12.032
- Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B: Eng., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008
- Jiang, R.W., Shen, Z.B. and Tang, G.J. (2016), "Vibration analysis of a single-layered graphene sheet-based mass sensor using the Galerkin strip distributed transfer function method", Acta Mech., 1-12.
- Karami, B., Shahsavari, D. and Li, L. (2018), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Phys. E: Low-Dimens. Syst. Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Sol., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Mohammadi, M., Farajpour, A., Moradi, A. and Ghayour, M. (2014), "Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment", Compos. Part B: Eng., 56, 629-637. https://doi.org/10.1016/j.compositesb.2013.08.060
- Mohammadi, M., Goodarzi, M., Ghayour, M. and Farajpour, A.(2013), "Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory", Compos. Part B: Eng., 51, 121-129. https://doi.org/10.1016/j.compositesb.2013.02.044
- Murmu, T., McCarthy, M.A. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005
- Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mech., 223(2), 395-413. https://doi.org/10.1007/s00707-011-0560-5
- Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004
- Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47(1), 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001
- Shen, Z.B., Tang, H.L., Li, D.K. and Tang, G.J. (2012), "Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory", Comput. Mater. Sci., 61,200-205. https://doi.org/10.1016/j.commatsci.2012.04.003
- Sobhy, M. (2014), "Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium", Phys. E: Low-Dimens. Syst. Nanostruct., 56, 400-409. https://doi.org/10.1016/j.physe.2013.10.017
- Sobhy, M. (2016), "Hygrothermal vibration of orthotropic double-layeredgraphene sheets embedded in an elastic medium using the two-variable plate theory", Appl. Math. Model., 40(1), 85-99. https://doi.org/10.1016/j.apm.2015.04.037
- Zenkour, A.M. (2016), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Phys. E: Low-Dimens. Syst. Nanostruct., 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003
Cited by
- Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2018, https://doi.org/10.12989/sem.2019.70.4.407
- Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.529